{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Uczenie maszynowe – zastosowania\n",
"# 10. Sieci neuronowe – propagacja wsteczna"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import math"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 10.1. Metoda propagacji wstecznej – wprowadzenie"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Architektura sieci neuronowych\n",
"\n",
"* Budowa warstwowa, najczęściej sieci jednokierunkowe i gęste.\n",
"* Liczbę i rozmiar warstw dobiera się do każdego problemu.\n",
"* Rozmiary sieci określane poprzez liczbę neuronów lub parametrów."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### _Feedforward_\n",
"\n",
"Mając daną $n$-warstwową sieć neuronową oraz jej parametry $\\Theta^{(1)}, \\ldots, \\Theta^{(L)} $ oraz $\\beta^{(1)}, \\ldots, \\beta^{(L)} $, obliczamy:\n",
"\n",
"$$a^{(l)} = g^{(l)}\\left( a^{(l-1)} \\Theta^{(l)} + \\beta^{(l)} \\right). $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Funkcje $g^{(l)}$ to **funkcje aktywacji**.
\n",
"Dla $i = 0$ przyjmujemy $a^{(0)} = x$ (wektor wierszowy cech) oraz $g^{(0)}(x) = x$ (identyczność)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Parametry $\\Theta$ to wagi na połączeniach miedzy neuronami dwóch warstw.
\n",
"Rozmiar macierzy $\\Theta^{(l)}$, czyli macierzy wag na połączeniach warstw $a^{(l-1)}$ i $a^{(l)}$, to $\\dim(a^{(l-1)}) \\times \\dim(a^{(l)})$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Parametry $\\beta$ zastępują tutaj dodawanie kolumny z jedynkami do macierzy cech.
Macierz $\\beta^{(l)}$ ma rozmiar równy liczbie neuronów w odpowiedniej warstwie, czyli $1 \\times \\dim(a^{(l)})$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* **Klasyfikacja**: dla ostatniej warstwy $L$ (o rozmiarze równym liczbie klas) przyjmuje się $g^{(L)}(x) = \\mathop{\\mathrm{softmax}}(x)$.\n",
"* **Regresja**: pojedynczy neuron wyjściowy; funkcją aktywacji może wtedy być np. funkcja identycznościowa."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Pozostałe funkcje aktywacji najcześciej mają postać sigmoidy, np. sigmoidalna, tangens hiperboliczny.
Ale niekoniecznie, np. ReLU, leaky ReLU, maxout."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Jak uczyć sieci neuronowe?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* W poznanych do tej pory algorytmach (regresja liniowa, regresja logistyczna) do uczenia używaliśmy funkcji kosztu, jej gradientu oraz algorytmu gradientu prostego (GD/SGD)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Dla sieci neuronowych potrzebowalibyśmy również znaleźć gradient funkcji kosztu."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Co sprowadza się do bardziej ogólnego problemu:
jak obliczyć gradient $\\nabla f(x)$ dla danej funkcji $f$ i wektora wejściowego $x$?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Pochodna funkcji\n",
"\n",
"* **Pochodna** mierzy, jak szybko zmienia się wartość funkcji względem zmiany jej argumentów:\n",
"\n",
"$$ \\frac{d f(x)}{d x} = \\lim_{h \\to 0} \\frac{ f(x + h) - f(x) }{ h } $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Pochodna cząstkowa i gradient\n",
"\n",
"* **Pochodna cząstkowa** mierzy, jak szybko zmienia się wartość funkcji względem zmiany jej *pojedynczego argumentu*."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* **Gradient** to wektor pochodnych cząstkowych:\n",
"\n",
"$$ \\nabla f = \\left( \\frac{\\partial f}{\\partial x_1}, \\ldots, \\frac{\\partial f}{\\partial x_n} \\right) $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Gradient – przykłady\n",
"\n",
"$$ f(x_1, x_2) = x_1 + x_2 \\qquad \\to \\qquad \\frac{\\partial f}{\\partial x_1} = 1, \\quad \\frac{\\partial f}{\\partial x_2} = 1, \\quad \\nabla f = (1, 1) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ f(x_1, x_2) = x_1 \\cdot x_2 \\qquad \\to \\qquad \\frac{\\partial f}{\\partial x_1} = x_2, \\quad \\frac{\\partial f}{\\partial x_2} = x_1, \\quad \\nabla f = (x_2, x_1) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ f(x_1, x_2) = \\max(x_1 + x_2) \\hskip{12em} \\\\\n",
"\\to \\qquad \\frac{\\partial f}{\\partial x_1} = \\mathbb{1}_{x \\geq y}, \\quad \\frac{\\partial f}{\\partial x_2} = \\mathbb{1}_{y \\geq x}, \\quad \\nabla f = (\\mathbb{1}_{x \\geq y}, \\mathbb{1}_{y \\geq x}) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Własności pochodnych cząstkowych\n",
"\n",
"Jezeli $f(x, y, z) = (x + y) \\, z$ oraz $x + y = q$, to:\n",
"$$f = q z,\n",
"\\quad \\frac{\\partial f}{\\partial q} = z,\n",
"\\quad \\frac{\\partial f}{\\partial z} = q,\n",
"\\quad \\frac{\\partial q}{\\partial x} = 1,\n",
"\\quad \\frac{\\partial q}{\\partial y} = 1 $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Reguła łańcuchowa\n",
"\n",
"$$ \\frac{\\partial f}{\\partial x} = \\frac{\\partial f}{\\partial q} \\, \\frac{\\partial q}{\\partial x},\n",
"\\quad \\frac{\\partial f}{\\partial y} = \\frac{\\partial f}{\\partial q} \\, \\frac{\\partial q}{\\partial y} $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – prosty przykład"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"# Dla ustalonego wejścia\n",
"x = -2; y = 5; z = -4"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3, -12)\n"
]
}
],
"source": [
"# Krok w przód\n",
"q = x + y\n",
"f = q * z\n",
"print(q, f)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-4, -4, 3]\n"
]
}
],
"source": [
"# Propagacja wsteczna dla f = q * z\n",
"dz = q\n",
"dq = z\n",
"# Propagacja wsteczna dla q = x + y\n",
"dx = 1 * dq # z reguły łańcuchowej\n",
"dy = 1 * dq # z reguły łańcuchowej\n",
"print([dx, dy, dz])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Właśnie tak wygląda obliczanie pochodnych metodą propagacji wstecznej!"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Spróbujmy czegoś bardziej skomplikowanego:
metodą propagacji wstecznej obliczmy pochodną funkcji sigmoidalnej."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – funkcja sigmoidalna"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Funkcja sigmoidalna:\n",
"\n",
"$$f(\\theta,x) = \\frac{1}{1+e^{-(\\theta_0 x_0 + \\theta_1 x_1 + \\theta_2)}}$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$\n",
"\\begin{array}{lcl}\n",
"f(x) = \\frac{1}{x} \\quad & \\rightarrow & \\quad \\frac{df}{dx} = -\\frac{1}{x^2} \\\\\n",
"f_c(x) = c + x \\quad & \\rightarrow & \\quad \\frac{df}{dx} = 1 \\\\\n",
"f(x) = e^x \\quad & \\rightarrow & \\quad \\frac{df}{dx} = e^x \\\\\n",
"f_a(x) = ax \\quad & \\rightarrow & \\quad \\frac{df}{dx} = a \\\\\n",
"\\end{array}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3932238664829637, -0.5898357997244456]\n",
"[-0.19661193324148185, -0.3932238664829637, 0.19661193324148185]\n"
]
}
],
"source": [
"# Losowe wagi i dane\n",
"w = [2,-3,-3]\n",
"x = [-1, -2]\n",
"\n",
"# Krok w przód\n",
"dot = w[0]*x[0] + w[1]*x[1] + w[2]\n",
"f = 1.0 / (1 + math.exp(-dot)) # funkcja sigmoidalna\n",
"\n",
"# Krok w tył\n",
"ddot = (1 - f) * f # pochodna funkcji sigmoidalnej\n",
"dx = [w[0] * ddot, w[1] * ddot]\n",
"dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot]\n",
"\n",
"print(dx)\n",
"print(dw)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Obliczanie gradientów – podsumowanie\n",
"\n",
"* Gradient $f$ dla $x$ mówi jak zmieni się całe wyrażenie przy zmianie wartości $x$.\n",
"* Gradienty łączymy korzystając z **reguły łańcuchowej**.\n",
"* W kroku wstecz gradienty informują, które części grafu powinny być zwiększone lub zmniejszone (i z jaką siłą), aby zwiększyć wartość na wyjściu.\n",
"* W kontekście implementacji chcemy dzielić funkcję $f$ na części, dla których można łatwo obliczyć gradienty."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 10.2. Uczenie wielowarstwowych sieci neuronowych metodą propagacji wstecznej"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Mając algorytm SGD oraz gradienty wszystkich wag, moglibyśmy trenować każdą sieć."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Niech:\n",
"$$\\Theta = (\\Theta^{(1)},\\Theta^{(2)},\\Theta^{(3)},\\beta^{(1)},\\beta^{(2)},\\beta^{(3)})$$\n",
"\n",
"* Funkcja sieci neuronowej z grafiki:\n",
"\n",
"$$\\small h_\\Theta(x) = \\tanh(\\tanh(\\tanh(x\\Theta^{(1)}+\\beta^{(1)})\\Theta^{(2)} + \\beta^{(2)})\\Theta^{(3)} + \\beta^{(3)})$$\n",
"* Funkcja kosztu dla regresji:\n",
"$$J(\\Theta) = \\dfrac{1}{2m} \\sum_{i=1}^{m} (h_\\Theta(x^{(i)})- y^{(i)})^2 $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Jak obliczymy gradienty?\n",
"\n",
"$$\\nabla_{\\Theta^{(l)}} J(\\Theta) = ? \\quad \\nabla_{\\beta^{(l)}} J(\\Theta) = ?$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### W kierunku propagacji wstecznej\n",
"\n",
"* Pewna (niewielka) zmiana wagi $\\Delta z^l_j$ dla $j$-ego neuronu w warstwie $l$ pociąga za sobą (niewielką) zmianę kosztu: \n",
"\n",
"$$\\frac{\\partial J(\\Theta)}{\\partial z^{l}_j} \\Delta z^{l}_j$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Jeżeli $\\frac{\\partial J(\\Theta)}{\\partial z^{l}_j}$ jest duża, $\\Delta z^l_j$ ze znakiem przeciwnym zredukuje koszt.\n",
"* Jeżeli $\\frac{\\partial J(\\Theta)}{\\partial z^l_j}$ jest bliska zeru, koszt nie będzie mocno poprawiony."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Definiujemy błąd $\\delta^l_j$ neuronu $j$ w warstwie $l$: \n",
"\n",
"$$\\delta^l_j := \\dfrac{\\partial J(\\Theta)}{\\partial z^l_j}$$ \n",
"$$\\delta^l := \\nabla_{z^l} J(\\Theta) \\quad \\textrm{ (zapis wektorowy)} $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Podstawowe równania propagacji wstecznej\n",
"\n",
"$$\n",
"\\begin{array}{rcll}\n",
"\\delta^L & = & \\nabla_{a^L}J(\\Theta) \\odot { \\left( g^{L} \\right) }^{\\prime} \\left( z^L \\right) & (BP1) \\\\[2mm]\n",
"\\delta^{l} & = & \\left( \\left( \\Theta^{l+1} \\right) \\! ^\\top \\, \\delta^{l+1} \\right) \\odot {{ \\left( g^{l} \\right) }^{\\prime}} \\left( z^{l} \\right) & (BP2)\\\\[2mm]\n",
"\\nabla_{\\beta^l} J(\\Theta) & = & \\delta^l & (BP3)\\\\[2mm]\n",
"\\nabla_{\\Theta^l} J(\\Theta) & = & a^{l-1} \\odot \\delta^l & (BP4)\\\\\n",
"\\end{array}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP1)\n",
"$$ \\delta^L_j \\; = \\; \\frac{ \\partial J }{ \\partial a^L_j } \\, g' \\!\\! \\left( z^L_j \\right) $$\n",
"$$ \\delta^L \\; = \\; \\nabla_{a^L}J(\\Theta) \\odot { \\left( g^{L} \\right) }^{\\prime} \\left( z^L \\right) $$\n",
"Błąd w ostatniej warstwie jest iloczynem szybkości zmiany kosztu względem $j$-tego wyjścia i szybkości zmiany funkcji aktywacji w punkcie $z^L_j$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP2)\n",
"$$ \\delta^{l} \\; = \\; \\left( \\left( \\Theta^{l+1} \\right) \\! ^\\top \\, \\delta^{l+1} \\right) \\odot {{ \\left( g^{l} \\right) }^{\\prime}} \\left( z^{l} \\right) $$\n",
"Aby obliczyć błąd w $l$-tej warstwie, należy przemnożyć błąd z następnej ($(l+1)$-szej) warstwy przez transponowany wektor wag, a uzyskaną macierz pomnożyć po współrzędnych przez szybkość zmiany funkcji aktywacji w punkcie $z^l$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP3)\n",
"$$ \\nabla_{\\beta^l} J(\\Theta) \\; = \\; \\delta^l $$\n",
"Błąd w $l$-tej warstwie jest równy wartości gradientu funkcji kosztu."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP4)\n",
"$$ \\nabla_{\\Theta^l} J(\\Theta) \\; = \\; a^{l-1} \\odot \\delta^l $$\n",
"Gradient funkcji kosztu względem wag $l$-tej warstwy można obliczyć jako iloczyn po współrzędnych $a^{l-1}$ przez $\\delta^l$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Algorytm propagacji wstecznej"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Dla jednego przykładu $(x,y)$:\n",
"\n",
"1. **Wejście**: Ustaw aktywacje w warstwie cech $a^{(0)}=x$ \n",
"2. **Feedforward:** dla $l=1,\\dots,L$ oblicz \n",
"$$z^{(l)} = a^{(l-1)} \\Theta^{(l)} + \\beta^{(l)} \\textrm{ oraz } a^{(l)}=g^{(l)} \\!\\! \\left( z^{(l)} \\right) $$\n",
"3. **Błąd wyjścia $\\delta^{(L)}$:** oblicz wektor $$\\delta^{(L)}= \\nabla_{a^{(L)}}J(\\Theta) \\odot {g^{\\prime}}^{(L)} \\!\\! \\left( z^{(L)} \\right) $$\n",
"4. **Propagacja wsteczna błędu:** dla $l = L-1,L-2,\\dots,1$ oblicz $$\\delta^{(l)} = \\delta^{(l+1)}(\\Theta^{(l+1)})^T \\odot {g^{\\prime}}^{(l)} \\!\\! \\left( z^{(l)} \\right) $$\n",
"5. **Gradienty:** \n",
" * $\\dfrac{\\partial}{\\partial \\Theta_{ij}^{(l)}} J(\\Theta) = a_i^{(l-1)}\\delta_j^{(l)} \\textrm{ oraz } \\dfrac{\\partial}{\\partial \\beta_{j}^{(l)}} J(\\Theta) = \\delta_j^{(l)}$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"W naszym przykładzie:\n",
"\n",
"$$\\small J(\\Theta) = \\frac{1}{2} \\left( a^{(L)} - y \\right) ^2 $$\n",
"$$\\small \\dfrac{\\partial}{\\partial a^{(L)}} J(\\Theta) = a^{(L)} - y$$\n",
"\n",
"$$\\small \\tanh^{\\prime}(x) = 1 - \\tanh^2(x)$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Algorytm SGD z propagacją wsteczną\n",
"\n",
"Pojedyncza iteracja:\n",
"* Dla parametrów $\\Theta = (\\Theta^{(1)},\\ldots,\\Theta^{(L)})$ utwórz pomocnicze macierze zerowe $\\Delta = (\\Delta^{(1)},\\ldots,\\Delta^{(L)})$ o takich samych wymiarach (dla uproszczenia opuszczono wagi $\\beta$).\n",
"* Dla $m$ przykładów we wsadzie (_batch_), $i = 1,\\ldots,m$:\n",
" * Wykonaj algortym propagacji wstecznej dla przykładu $(x^{(i)}, y^{(i)})$ i przechowaj gradienty $\\nabla_{\\Theta}J^{(i)}(\\Theta)$ dla tego przykładu;\n",
" * $\\Delta := \\Delta + \\dfrac{1}{m}\\nabla_{\\Theta}J^{(i)}(\\Theta)$\n",
"* Wykonaj aktualizację wag: $\\Theta := \\Theta - \\alpha \\Delta$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – podsumowanie\n",
"\n",
"* Algorytm pierwszy raz wprowadzony w latach 70. XX w.\n",
"* W 1986 David Rumelhart, Geoffrey Hinton i Ronald Williams pokazali, że jest znacznie szybszy od wcześniejszych metod.\n",
"* Obecnie najpopularniejszy algorytm uczenia sieci neuronowych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 10.3. Implementacja sieci neuronowych"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n", " | łod.dł. | \n", "łod.sz. | \n", "pł.dł. | \n", "pł.sz. | \n", "Iris setosa? | \n", "
---|---|---|---|---|---|
0 | \n", "5.2 | \n", "3.4 | \n", "1.4 | \n", "0.2 | \n", "1.0 | \n", "
1 | \n", "5.1 | \n", "3.7 | \n", "1.5 | \n", "0.4 | \n", "1.0 | \n", "
2 | \n", "6.7 | \n", "3.1 | \n", "5.6 | \n", "2.4 | \n", "0.0 | \n", "
3 | \n", "6.5 | \n", "3.2 | \n", "5.1 | \n", "2.0 | \n", "0.0 | \n", "
4 | \n", "4.9 | \n", "2.5 | \n", "4.5 | \n", "1.7 | \n", "0.0 | \n", "
5 | \n", "6.0 | \n", "2.7 | \n", "5.1 | \n", "1.6 | \n", "0.0 | \n", "