{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Uczenie maszynowe – zastosowania\n", "# 3. Regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Wbrew nazwie, *regresja* logistyczna jest algorytmem służącym do rozwiązywania problemów *klasyfikacji* (wcale nie problemów *regresji*!)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## 3.1. Dwuklasowa regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Zacznijmy od najprostszego przypadku: chcemy nasze dane przypisać do jednej z **dwóch** klas.\n", "W tym celu użyjemy regresji logistycznej **dwuklasowej**." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "\n", "### Przykład: kosaciec szczecinkowy (*Iris setosa*)\n", "\n", "Mamy dane dotyczące długości płatków i chcielibyśmy na tej podstawie określić, czy jest to roślina z gatunku _Iris setosa_" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "# Przydatne importy\n", "\n", "import numpy as np\n", "import matplotlib\n", "import matplotlib.pyplot as pl\n", "import pandas\n", "import ipywidgets as widgets\n", "\n", "%matplotlib inline\n", "%config InlineBackend.figure_format = 'svg'\n", "\n", "from IPython.display import display, Math, Latex\n", "\n", "# Przydatne funkcje\n", "\n", "# Wyświetlanie macierzy w LaTeX-u\n", "def LatexMatrix(matrix):\n", " ltx = r'\\left[\\begin{array}'\n", " m, n = matrix.shape\n", " ltx += '{' + (\"r\" * n) + '}'\n", " for i in range(m):\n", " ltx += r\" & \".join([('%.4f' % j.item()) for j in matrix[i]]) + r\" \\\\ \"\n", " ltx += r'\\end{array}\\right]'\n", " return ltx\n", "\n", "# Hipoteza (wersja macierzowa)\n", "def hMx(theta, X):\n", " return X * theta\n", "\n", "# Wykres danych (wersja macierzowa)\n", "def regdotsMx(X, y, xlabel, ylabel): \n", " fig = pl.figure(figsize=(16*.6, 9*.6))\n", " ax = fig.add_subplot(111)\n", " fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n", " ax.scatter([X[:, 1]], [y], c='r', s=50, label='Dane')\n", " \n", " ax.set_xlabel(xlabel)\n", " ax.set_ylabel(ylabel)\n", " ax.margins(.05, .05)\n", " pl.ylim(y.min() - 1, y.max() + 1)\n", " pl.xlim(np.min(X[:, 1]) - 1, np.max(X[:, 1]) + 1)\n", " return fig\n", "\n", "# Wykres krzywej regresji (wersja macierzowa)\n", "def reglineMx(fig, fun, theta, X):\n", " ax = fig.axes[0]\n", " x0 = np.min(X[:, 1]) - 1.0\n", " x1 = np.max(X[:, 1]) + 1.0\n", " L = [x0, x1]\n", " LX = np.matrix([1, x0, 1, x1]).reshape(2, 2)\n", " ax.plot(L, fun(theta, LX), linewidth='2',\n", " label=(r'$y={theta0:.2}{op}{theta1:.2}x$'.format(\n", " theta0=float(theta[0][0]),\n", " theta1=(float(theta[1][0]) if theta[1][0] >= 0 else float(-theta[1][0])),\n", " op='+' if theta[1][0] >= 0 else '-')))\n", "\n", "# Legenda wykresu\n", "def legend(fig):\n", " ax = fig.axes[0]\n", " handles, labels = ax.get_legend_handles_labels()\n", " # try-except block is a fix for a bug in Poly3DCollection\n", " try:\n", " fig.legend(handles, labels, fontsize='15', loc='lower right')\n", " except AttributeError:\n", " pass\n", "\n", "# Wersja macierzowa funkcji kosztu\n", "def JMx(theta,X,y):\n", " m = len(y)\n", " J = 1.0 / (2.0 * m) * ((X * theta - y).T * ( X * theta - y))\n", " return J.item()\n", "\n", "# Wersja macierzowa gradientu funkcji kosztu\n", "def dJMx(theta,X,y):\n", " return 1.0 / len(y) * (X.T * (X * theta - y)) \n", "\n", "# Implementacja algorytmu gradientu prostego za pomocą numpy i macierzy\n", "def GDMx(fJ, fdJ, theta, X, y, alpha=0.1, eps=10**-3):\n", " current_cost = fJ(theta, X, y)\n", " logs = [[current_cost, theta]]\n", " while True:\n", " theta = theta - alpha * fdJ(theta, X, y) # implementacja wzoru\n", " current_cost, prev_cost = fJ(theta, X, y), current_cost\n", " if current_cost > 10000:\n", " break\n", " if abs(prev_cost - current_cost) <= eps:\n", " break\n", " logs.append([current_cost, theta]) \n", " return theta, logs\n", "\n", "thetaStartMx = np.matrix([0, 0]).reshape(2, 1)\n", "\n", "# Funkcja, która rysuje próg\n", "def threshold(fig, theta):\n", " x_thr = (0.5 - theta.item(0)) / theta.item(1)\n", " ax = fig.axes[0]\n", " ax.plot([x_thr, x_thr], [-1, 2],\n", " color='orange', linestyle='dashed',\n", " label=u'próg: $x={:.2F}$'.format(x_thr))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " sl sw pl pw Gatunek\n", "0 5.2 3.4 1.4 0.2 Iris-setosa\n", "1 5.1 3.7 1.5 0.4 Iris-setosa\n", "2 6.7 3.1 5.6 2.4 Iris-virginica\n", "3 6.5 3.2 5.1 2.0 Iris-virginica\n", "4 4.9 2.5 4.5 1.7 Iris-virginica\n", "5 6.0 2.7 5.1 1.6 Iris-versicolor\n" ] } ], "source": [ "# Wczytanie danych\n", "\n", "data_iris = pandas.read_csv('iris.csv')\n", "print(data_iris[:6])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " dł. płatka Iris setosa?\n", "0 1.4 1\n", "1 1.5 1\n", "2 5.6 0\n", "3 5.1 0\n", "4 4.5 0\n", "5 5.1 0\n" ] } ], "source": [ "data_iris_setosa = pandas.DataFrame()\n", "data_iris_setosa['dł. płatka'] = data_iris['pl'] # \"pl\" oznacza \"petal length\"\n", "data_iris_setosa['Iris setosa?'] = data_iris['Gatunek'].apply(lambda x: 1 if x=='Iris-setosa' else 0)\n", "print(data_iris_setosa[:6])" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Czy możemy tu zastosować regresję liniową?\n", "\n", "Spróbujmy:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(150, 2)\n" ] } ], "source": [ "print(data_iris_setosa.values.shape)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "import numpy as np\n", "\n", "m, n_plus_1 = data_iris_setosa.values.shape\n", "n = n_plus_1 - 1\n", "Xn = data_iris_setosa.values[:, 0:n].reshape(m, n)\n", "\n", "XMx3 = np.matrix(np.concatenate((np.ones((m, 1)), Xn), axis=1)).reshape(m, n_plus_1)\n", "yMx3 = np.matrix(data_iris_setosa.values[:, 1]).reshape(m, 1)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = regdotsMx(XMx3, yMx3, 'x', 'Iris setosa?')\n", "theta_e3, logs3 = GDMx(JMx, dJMx, thetaStartMx, XMx3, yMx3, alpha=0.03, eps=0.000001)\n", "reglineMx(fig, hMx, theta_e3, XMx3)\n", "threshold(fig, theta_e3)\n", "legend(fig)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ " * Krzywa regresji liniowej jest niezbyt dopasowana do danych klasyfikacyjnych.\n", " * Zastosowanie progu $y = 0.5$ nie zawsze pomaga uzyskać sensowny rezultat.\n", " * $h(x)$ może przyjmować wartości mniejsze od $0$ i większe od $1$ – jak interpretować takie wyniki?\n", "\n", "Wniosek: w przypadku problemów klasyfikacyjnych regresja liniowa nie wydaje się najlepszym rozwiązaniem." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "notes" } }, "source": [ "Zdefiniujmy sobie następującą funkcję, którą będziemy nazywać funkcją *logistyczną* (albo *sigmoidalną*):" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "**Funkcja logistyczna (sigmoidalna)**:\n", "\n", "$$g(x) = \\dfrac{1}{1+e^{-x}}$$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "# Funkjca logistycza\n", "\n", "def logistic(x):\n", " return 1.0 / (1.0 + np.exp(-x))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "def plot_logistic():\n", " x = np.linspace(-5,5,200)\n", " y = logistic(x)\n", "\n", " fig = plt.figure(figsize=(7,5))\n", " ax = fig.add_subplot(111)\n", " plt.ylim(-.1,1.1)\n", " ax.plot(x, y, linewidth='2')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Wykres funkcji logistycznej $g(x) = \\dfrac{1}{1+e^{-x}}$:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_logistic()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "notes" } }, "source": [ "Funkcja logistyczna przekształca zbiór liczb rzeczywistych $\\mathbb{R}$ w przedział otwarty $(0, 1)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Funkcja regresji logistycznej:\n", "\n", "$$h_\\theta(x) = g(\\theta^T \\, x) = \\dfrac{1}{1 + e^{-\\theta^T x}}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Wersja macierzowa:\n", "\n", "$$h_\\theta(X) = g(X \\, \\theta) = \\dfrac{1}{1 + e^{-X \\theta}}$$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Funkcja regresji logistcznej\n", "def h(theta, X):\n", " return 1.0/(1.0 + np.exp(-X * theta))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Funkcja kosztu dla regresji logistycznej:\n", "\n", "$$J(\\theta) = -\\dfrac{1}{m} \\left( \\sum_{i=1}^{m} y^{(i)} \\log h_\\theta( x^{(i)} ) + \\left( 1 - y^{(i)} \\right) \\log \\left( 1 - h_\\theta (x^{(i)}) \\right) \\right)$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Gradient dla regresji logistycznej (wersja macierzowa):\n", "\n", "$$\\nabla J(\\theta) = \\frac{1}{|\\vec y|} X^T \\left( h_\\theta(X) - \\vec y \\right)$$\n", "\n", "(Jedyna różnica między gradientem dla regresji logistycznej a gradientem dla regresji liniowej to postać $h_\\theta$)." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Funkcja kosztu dla regresji logistycznej\n", "def J(h, theta, X, y):\n", " m = len(y)\n", " h_val = h(theta, X)\n", " s1 = np.multiply(y, np.log(h_val))\n", " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", " return -np.sum(s1 + s2, axis=0) / m" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "# Gradient dla regresji logistycznej\n", "def dJ(h, theta, X, y):\n", " return 1.0 / len(y) * (X.T * (h(theta, X) - y))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Metoda gradientu prostego dla regresji logistycznej\n", "def GD(h, fJ, fdJ, theta, X, y, alpha=0.01, eps=10**-3, maxSteps=10000):\n", " errorCurr = fJ(h, theta, X, y)\n", " errors = [[errorCurr, theta]]\n", " while True:\n", " # oblicz nowe theta\n", " theta = theta - alpha * fdJ(h, theta, X, y)\n", " # raportuj poziom błędu\n", " errorCurr, errorPrev = fJ(h, theta, X, y), errorCurr\n", " # kryteria stopu\n", " if abs(errorPrev - errorCurr) <= eps:\n", " break\n", " if len(errors) > maxSteps:\n", " break\n", " errors.append([errorCurr, theta]) \n", " return theta, errors" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "error = [[0.05755617]]\n", "theta = [[ 5.02530461]\n", " [-1.99174803]]\n" ] } ], "source": [ "# Uruchomienie metody gradientu prostego dla regresji logistycznej\n", "thetaBest, errors = GD(h, J, dJ, thetaStartMx, XMx3, yMx3, \n", " alpha=0.1, eps=10**-7, maxSteps=1000)\n", "print(\"error =\", errors[-1][0])\n", "print(\"theta =\", thetaBest)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "# Funkcja regresji logistycznej (wersja skalarna)\n", "def scalar_logistic_regression_function(theta, x):\n", " return 1.0/(1.0 + np.exp(-(theta.item(0) + theta.item(1) * x)))\n", "\n", "# Rysowanie progu\n", "def threshold_val(fig, x_thr):\n", " ax = fig.axes[0]\n", " ax.plot([x_thr, x_thr], [-1, 2],\n", " color='orange', linestyle='dashed',\n", " label=u'próg: $x={:.2F}$'.format(x_thr))\n", "\n", "# Wykres krzywej regresji logistycznej\n", "def logistic_regline(fig, theta, X):\n", " ax = fig.axes[0]\n", " x0 = np.min(X[:, 1]) - 1.0\n", " x1 = np.max(X[:, 1]) + 1.0\n", " Arg = np.arange(x0, x1, 0.1)\n", " Val = scalar_logistic_regression_function(theta, Arg)\n", " ax.plot(Arg, Val, linewidth='2')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = regdotsMx(XMx3, yMx3, xlabel='x', ylabel='Iris setosa?')\n", "logistic_regline(fig, thetaBest, XMx3)\n", "threshold_val(fig, 2.5)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Traktujemy wartość $h_\\theta(x)$ jako prawdopodobieństwo, że cecha przyjmie wartość pozytywną:\n", "\n", "$$ h_\\theta(x) = P(y = 1 \\, | \\, x; \\theta) $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Jeżeli $h_\\theta(x) > 0.5$, to dla takiego $x$ będziemy przewidywać wartość $y = 1$.\n", "W przeciwnym wypadku uprzewidzimy $y = 0$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Dwuklasowa regresja logistyczna: więcej cech" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "notes" } }, "source": [ "Jak postąpić, jeżeli będziemy mieli więcej niż jedną cechę $x$?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Weźmy pod uwagę następujące cechy:\n", " * długość działek kielicha\n", " * szerokość działek kielicha\n", " * długość płatka\n", " * szerokość płatka" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " dł. płatków szer. płatków dł. dz. k. szer. dz. k. Iris setosa?\n", "0 1.4 0.2 5.2 3.4 1\n", "1 1.5 0.4 5.1 3.7 1\n", "2 5.6 2.4 6.7 3.1 0\n", "3 5.1 2.0 6.5 3.2 0\n", "4 4.5 1.7 4.9 2.5 0\n", "5 5.1 1.6 6.0 2.7 0\n" ] } ], "source": [ "data_iris_setosa_multi = pandas.DataFrame()\n", "data_iris_setosa_multi['dł. płatków'] = data_iris['pl'] # \"pl\" oznacza \"petal length\" (długość płatków)\n", "data_iris_setosa_multi['szer. płatków'] = data_iris['pw'] # \"pw\" oznacza \"petal width\" (szerokość płatków)\n", "data_iris_setosa_multi['dł. dz. k.'] = data_iris['sl'] # \"sl\" oznacza \"sepal length\" (długość działek kielicha)\n", "data_iris_setosa_multi['szer. dz. k.'] = data_iris['sw'] # \"sw\" oznacza \"sepal width\" (szerokość działek kielicha)\n", "data_iris_setosa_multi['Iris setosa?'] = data_iris['Gatunek'].apply(lambda x: 1 if x=='Iris-setosa' else 0)\n", "print(data_iris_setosa_multi[:6])" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Poniższy wykres przedstawia zależności między wszystkimi cechami\n", "\n", "seaborn.pairplot(\n", " data_iris_setosa_multi,\n", " vars=[c for c in data_iris_setosa_multi.columns if c != 'Iris setosa?'], \n", " hue='Iris setosa?', height=1.5, aspect=1.75)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1. 1.4 0.2 5.2 3.4]\n", " [1. 1.5 0.4 5.1 3.7]\n", " [1. 5.6 2.4 6.7 3.1]\n", " [1. 5.1 2. 6.5 3.2]\n", " [1. 4.5 1.7 4.9 2.5]\n", " [1. 5.1 1.6 6. 2.7]]\n", "[[1.]\n", " [1.]\n", " [0.]\n", " [0.]\n", " [0.]\n", " [0.]]\n" ] } ], "source": [ "# Przygotowanie danych\n", "m, n_plus_1 = data_iris_setosa_multi.values.shape\n", "n = n_plus_1 - 1\n", "Xn = data_iris_setosa_multi.values[:, 0:n].reshape(m, n)\n", "\n", "XMx4 = np.matrix(np.concatenate((np.ones((m, 1)), Xn), axis=1)).reshape(m, n_plus_1)\n", "yMx4 = np.matrix(data_iris_setosa_multi.values[:, n]).reshape(m, 1)\n", "\n", "print(XMx4[:6])\n", "print(yMx4[:6])" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Podział danych na zbiór trenujący i testowy\n", "XTrain, XTest = XMx4[:100], XMx4[100:]\n", "yTrain, yTest = yMx4[:100], yMx4[100:]\n", "\n", "# Macierz parametrów początkowych\n", "thetaTemp = np.ones(5).reshape(5,1)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "error = [[0.006797]]\n", "theta = [[ 1.11414027]\n", " [-2.89324615]\n", " [-0.66543637]\n", " [ 0.14887292]\n", " [ 2.13284493]]\n" ] } ], "source": [ "thetaBest, errors = GD(h, J, dJ, thetaTemp, XTrain, yTrain, \n", " alpha=0.1, eps=10**-7, maxSteps=1000)\n", "print(\"error =\", errors[-1][0])\n", "print(\"theta =\", thetaBest)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Funkcja decyzyjna regresji logistycznej\n", "\n", "Funkcja decyzyjna mówi o tym, kiedy nasz algorytm będzie przewidywał $y = 1$, a kiedy $y = 0$\n", "\n", "$$ c = \\left\\{ \n", "\\begin{array}{ll}\n", "1, & \\mbox{gdy } P(y=1 \\, | \\, x; \\theta) > 0.5 \\\\\n", "0 & \\mbox{w przeciwnym przypadku}\n", "\\end{array}\\right.\n", "$$\n", "\n", "$$ P(y=1 \\,| \\, x; \\theta) = h_\\theta(x) $$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "theta = [[ 1.11414027]\n", " [-2.89324615]\n", " [-0.66543637]\n", " [ 0.14887292]\n", " [ 2.13284493]]\n", "x0 = [[1. 6.3 1.8 7.3 2.9]]\n", "h(x0) = 1.6061436959824898e-05\n", "c(x0) = (0, 1.6061436959824898e-05) \n", "\n" ] } ], "source": [ "def classifyBi(theta, X):\n", " prob = h(theta, X) .item()\n", " return (1, prob) if prob > 0.5 else (0, prob)\n", "\n", "print(\"theta =\", thetaBest)\n", "print(\"x0 =\", XTest[0])\n", "print(\"h(x0) =\", h(thetaBest, XTest[0]).item())\n", "print(\"c(x0) =\", classifyBi(thetaBest, XTest[0]), \"\\n\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Skuteczność" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 <=> 0 -- prob: 0.0\n", "1 <=> 1 -- prob: 0.9816\n", "0 <=> 0 -- prob: 0.0001\n", "0 <=> 0 -- prob: 0.0005\n", "0 <=> 0 -- prob: 0.0001\n", "1 <=> 1 -- prob: 0.9936\n", "0 <=> 0 -- prob: 0.0059\n", "0 <=> 0 -- prob: 0.0992\n", "0 <=> 0 -- prob: 0.0001\n", "0 <=> 0 -- prob: 0.0001\n", "\n", "Accuracy: 1.0\n" ] } ], "source": [ "acc = 0.0\n", "for i, rest in enumerate(yTest):\n", " cls, prob = classifyBi(thetaBest, XTest[i])\n", " if i < 10:\n", " print(int(yTest[i].item()), \"<=>\", cls, \"-- prob:\", round(prob, 4))\n", " acc += cls == yTest[i].item()\n", "\n", "print(\"\\nAccuracy:\", acc / len(XTest))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## 3.4. Wieloklasowa regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Przykład: gatunki irysów (kosaćców)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "\n", "Kosaciec szczecinkowy (*Iris setosa*)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "\n", "Kosaciec amerykański (*Iris virginica*)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "\n", "\n", "Kosaciec różnobarwny (*Iris versicolor*)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Cechy:\n", " * długość działek kielicha\n", " * szerokość działek kielicha\n", " * długość płatka\n", " * szerokość płatka" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Wczytanie danych" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
slswplpwGatunek
05.23.41.40.2Iris-setosa
15.13.71.50.4Iris-setosa
26.73.15.62.4Iris-virginica
36.53.25.12.0Iris-virginica
44.92.54.51.7Iris-virginica
56.02.75.11.6Iris-versicolor
\n", "
" ], "text/plain": [ " sl sw pl pw Gatunek\n", "0 5.2 3.4 1.4 0.2 Iris-setosa\n", "1 5.1 3.7 1.5 0.4 Iris-setosa\n", "2 6.7 3.1 5.6 2.4 Iris-virginica\n", "3 6.5 3.2 5.1 2.0 Iris-virginica\n", "4 4.9 2.5 4.5 1.7 Iris-virginica\n", "5 6.0 2.7 5.1 1.6 Iris-versicolor" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas\n", "data_iris = pandas.read_csv('iris.csv')\n", "data_iris[:6]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Przygotowanie danych" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X = [[1. 5.2 3.4 1.4 0.2]\n", " [1. 5.1 3.7 1.5 0.4]\n", " [1. 6.7 3.1 5.6 2.4]\n", " [1. 6.5 3.2 5.1 2. ]]\n", "y = [['Iris-setosa']\n", " ['Iris-setosa']\n", " ['Iris-virginica']\n", " ['Iris-virginica']]\n" ] } ], "source": [ "import numpy as np\n", "\n", "features = ['sl', 'sw', 'pl', 'pw']\n", "m = len(data_iris)\n", "X = np.matrix(data_iris[features])\n", "X0 = np.ones(m).reshape(m, 1)\n", "X = np.hstack((X0, X))\n", "y = np.matrix(data_iris[[\"Gatunek\"]]).reshape(m, 1)\n", "\n", "print(\"X = \", X[:4])\n", "print(\"y = \", y[:4])" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Zamieńmy etykiety tekstowe w tablicy $y$ na wektory jednostkowe (_one-hot vectors_):\n", "\n", "$$\n", "\\begin{array}{ccc}\n", "\\mbox{\"Iris-setosa\"} & \\mapsto & \\left[ \\begin{array}{ccc} 1 & 0 & 0 \\\\ \\end{array} \\right] \\\\\n", "\\mbox{\"Iris-virginica\"} & \\mapsto & \\left[ \\begin{array}{ccc} 0 & 1 & 0 \\\\ \\end{array} \\right] \\\\\n", "\\mbox{\"Iris-versicolor\"} & \\mapsto & \\left[ \\begin{array}{ccc} 0 & 0 & 1 \\\\ \\end{array} \\right] \\\\\n", "\\end{array}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Wówczas zamiast wektora $y$ otrzymamy macierz $Y$:\n", "\n", "$$\n", "y \\; = \\;\n", "\\left[\n", "\\begin{array}{c}\n", "y^{(1)} \\\\\n", "y^{(2)} \\\\\n", "y^{(3)} \\\\\n", "y^{(4)} \\\\\n", "y^{(5)} \\\\\n", "\\vdots \\\\\n", "\\end{array}\n", "\\right]\n", "\\; = \\;\n", "\\left[\n", "\\begin{array}{c}\n", "\\mbox{\"Iris-setosa\"} \\\\\n", "\\mbox{\"Iris-setosa\"} \\\\\n", "\\mbox{\"Iris-virginica\"} \\\\\n", "\\mbox{\"Iris-versicolor\"} \\\\\n", "\\mbox{\"Iris-virginica\"} \\\\\n", "\\vdots \\\\\n", "\\end{array}\n", "\\right]\n", "\\quad \\mapsto \\quad\n", "Y \\; = \\;\n", "\\left[\n", "\\begin{array}{ccc}\n", "1 & 0 & 0 \\\\\n", "1 & 0 & 0 \\\\\n", "0 & 1 & 0 \\\\\n", "0 & 0 & 1 \\\\\n", "0 & 1 & 0 \\\\\n", "\\vdots & \\vdots & \\vdots \\\\\n", "\\end{array}\n", "\\right]\n", "$$" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "def mapY(y, cls):\n", " m = len(y)\n", " yBi = np.matrix(np.zeros(m)).reshape(m, 1)\n", " yBi[y == cls] = 1.\n", " return yBi\n", "\n", "def indicatorMatrix(y):\n", " classes = np.unique(y.tolist())\n", " m = len(y)\n", " k = len(classes)\n", " Y = np.matrix(np.zeros((m, k)))\n", " for i, cls in enumerate(classes):\n", " Y[:, i] = mapY(y, cls)\n", " return Y\n", "\n", "# one-hot matrix\n", "Y = indicatorMatrix(y)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "# Podział danych na zbiór trenujący i testowy\n", "XTrain, XTest = X[:100], X[100:]\n", "YTrain, YTest = Y[:100], Y[100:]\n", "\n", "# Macierz parametrów początkowych\n", "thetaTemp = np.ones(5).reshape(5,1)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\pawel\\anaconda3\\lib\\site-packages\\seaborn\\axisgrid.py:2071: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", " warnings.warn(msg, UserWarning)\n" ] }, { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "g = seaborn.pairplot(data_iris, hue='Gatunek', size=1.75, aspect=1.5) " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Od regresji logistycznej dwuklasowej do wieloklasowej\n", "\n", "* Irysy są przydzielone do trzech klas: _Iris-setosa_ (0), _Iris-versicolor_ (1), _Iris-virginica_ (2).\n", "* Wiemy, jak stworzyć klasyfikatory typu _Iris-setosa_ vs. _Nie-Iris-setosa_ (tzw. _one-vs-all_).\n", "* Możemy stworzyć trzy klasyfikatory $h_{\\theta_1}, h_{\\theta_2}, h_{\\theta_3}$ (otrzymując trzy zestawy parametrów $\\theta$) i wybrać klasę o najwyższym prawdopodobieństwie." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Funkcja _softmax_\n", "\n", "Odpowiednikiem funkcji logistycznej dla wieloklasowej regresji logistycznej jest funkcja $\\mathrm{softmax}$:\n", "\n", "$$ \\textrm{softmax}(k,x_1,\\dots,x_n) = \\dfrac{e^{x_k}}{\\sum_{i=i}^{n}e^{x_i}} $$\n", "\n", "$$P(y=c|x;\\theta_1,\\ldots,\\theta_k) = \\textrm{softmax}(c,\\theta_1^Tx,\\ldots,\\theta_k^Tx)$$" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X5 = [[1. 5.2 3.4 1.4 0.2]\n", " [1. 5.1 3.7 1.5 0.4]\n", " [1. 6.7 3.1 5.6 2.4]]\n", "softmax = [[0.00175241 0.11686208 0.01931717 0.0026143 0.00078741]\n", " [0.00175241 0.10574119 0.02607546 0.00288924 0.00096175]\n", " [0.00175241 0.52373952 0.01431051 0.17433774 0.00710639]]\n" ] } ], "source": [ "# Zapis macierzowy funkcji softmax\n", "def softmax(X):\n", " return np.exp(X) / np.sum(np.exp(X))\n", "\n", "X5 = X[:3]\n", "print(\"X5 =\", X5)\n", "print(\"softmax =\", softmax(X5))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[2.1]\n", " [0.5]\n", " [0.8]\n", " [0.9]\n", " [3.2]]\n", "Suma X = 7.500000000000001 \n", "\n", "[[0.20921428]\n", " [0.04223963]\n", " [0.05701754]\n", " [0.06301413]\n", " [0.62851442]]\n", "Suma P = 0.9999999999999999\n" ] } ], "source": [ "XN = np.matrix([2.1, 0.5, 0.8, 0.9, 3.2]).reshape(5,1)\n", "P = softmax(XN)\n", "print(XN)\n", "print(\"Suma X =\", np.sum(XN), \"\\n\")\n", "print(P)\n", "print(\"Suma P =\", np.sum(P)) " ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.95600521]\n", " [ 0.3008249 ]\n", " [ 1.14728369]\n", " [-2.01112983]\n", " [-0.84511444]] \n", "\n", "[[ 0.89788572]\n", " [ 0.1826833 ]\n", " [-1.17817766]\n", " [ 0.42452859]\n", " [-0.5154342 ]] \n", "\n", "[[-0.59184417]\n", " [-1.67427304]\n", " [-1.60708071]\n", " [ 2.2607158 ]\n", " [ 2.78860875]] \n", "\n" ] } ], "source": [ "def trainMaxEnt(X, Y):\n", " n = X.shape[1]\n", " thetas = []\n", " for c in range(Y.shape[1]):\n", " YBi = Y[:,c]\n", " theta = np.matrix(np.random.random(n)).reshape(n,1)\n", " thetaBest, errors = GD(h, J, dJ, theta, \n", " X, YBi, alpha=0.1, eps=10**-4)\n", " thetas.append(thetaBest)\n", " return thetas\n", "\n", "thetas = trainMaxEnt(XTrain, YTrain);\n", "for theta in thetas:\n", " print(theta, \"\\n\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Funkcja decyzyjna wieloklasowej regresji logistycznej\n", "\n", "$$ c = \\mathop{\\textrm{arg}\\,\\textrm{max}}_{i \\in \\{1, \\ldots ,k\\}} P(y=i|x;\\theta_1,\\ldots,\\theta_k) $$" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "YTest = [[0. 0. 1.]\n", " [1. 0. 0.]\n", " [0. 0. 1.]\n", " [0. 0. 1.]\n", " [0. 0. 1.]\n", " [1. 0. 0.]]\n", "YTestCls = [[2.]\n", " [0.]\n", " [2.]\n", " [2.]\n", " [2.]\n", " [0.]] \n", "\n" ] } ], "source": [ "def classify(thetas, X, debug=False):\n", " regs = np.array([(X*theta).item() for theta in thetas])\n", " if debug:\n", " print(\"regs =\", regs)\n", " probs = softmax(regs)\n", " if debug:\n", " print(\"probs =\", np.around(probs,decimals=3))\n", " return np.argmax(probs), probs\n", "\n", "print(\"YTest =\", YTest[:6])\n", "YTestCls = YTest * np.matrix((0,1,2)).T\n", "print(\"YTestCls =\", YTestCls[:6], \"\\n\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Ewaluacja" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Dokonajmy teraz ewaluacji przewidywań naszego algorytmu. Użyjemy w tym celu metryki **skuteczności** (ang. *accuracy*).\n", "\n", "(Więcej o metrykach na jednym z następnych wykładów)." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "regs = [-7.71217423 0.56150712 1.78743387]\n", "probs = [0. 0.227 0.773]\n", "2 <=> 2 -- True [0.0001, 0.2269, 0.7731]\n", "regs = [ 2.77269971 -1.32005766 -9.44801214]\n", "probs = [0.984 0.016 0. ]\n", "0 <=> 0 -- True [0.9836, 0.0164, 0.0]\n", "regs = [-7.10669324 0.082711 1.89387671]\n", "probs = [0. 0.14 0.859]\n", "2 <=> 2 -- True [0.0001, 0.1405, 0.8594]\n", "regs = [-5.60524493 -0.32150156 1.25784909]\n", "probs = [0.001 0.171 0.828]\n", "2 <=> 2 -- True [0.0009, 0.1707, 0.8284]\n", "regs = [-6.67151256 0.60474413 1.58074117]\n", "probs = [0. 0.274 0.726]\n", "2 <=> 2 -- True [0.0002, 0.2736, 0.7262]\n", "regs = [ 3.29789958 -2.19499241 -10.94187298]\n", "probs = [0.996 0.004 0. ]\n", "0 <=> 0 -- True [0.9959, 0.0041, 0.0]\n", "\n", "Accuracy = 1.0\n" ] } ], "source": [ "acc = 0.0\n", "for i in range(len(YTestCls)):\n", " cls, probs = classify(thetas, XTest[i], i < 6)\n", " correctCls = int(YTestCls[i].item())\n", " if i < 6:\n", " print(correctCls, \" <=>\", cls, \" -- \", cls == correctCls, np.round(probs, 4).tolist())\n", " acc += correctCls == cls\n", "print(\"\\nAccuracy =\", acc/len(XTest))" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "livereveal": { "start_slideshow_at": "selected", "theme": "white" } }, "nbformat": 4, "nbformat_minor": 4 }