praca_magisterska/algorithms/bidirectional.py

151 lines
5.5 KiB
Python
Raw Normal View History

def heuristic_cost(start, goal, graph):
return 0
def bidirectional_algorithm(graph, point_set, start, goal, h=heuristic_cost):
def return_path_and_weight_front(c_f, c, s):
current_node = c_f[c]
shortest_path = [c, current_node]
while current_node != s:
current_node = c_f[current_node]
shortest_path.append(current_node)
weight = 0
for k in range(len(shortest_path) - 1):
if shortest_path[k] > shortest_path[k+1]:
weight += graph[(shortest_path[k], shortest_path[k+1])]
else:
weight += graph[(shortest_path[k + 1], shortest_path[k])]
return shortest_path, weight
def return_path_and_weight_back(c_f, c, s):
current_node = c_f[c]
shortest_path = [c, current_node]
while current_node != s:
current_node = c_f[current_node]
shortest_path.append(current_node)
weight = 0
shortest_path.reverse()
for k in range(len(shortest_path) - 1):
if shortest_path[k] > shortest_path[k+1]:
weight += graph[(shortest_path[k], shortest_path[k+1])]
else:
weight += graph[(shortest_path[k + 1], shortest_path[k])]
return shortest_path, weight
def return_path_and_weight_front_meet_back(c_f_f, c_f_b, c_f, s, g):
shortest_path_front, weight_front = return_path_and_weight_back(c_f_f, c_f, s)
shortest_path_back, weight_back = return_path_and_weight_back(c_f_b, c_f, g)
shortest_path_back.reverse()
return shortest_path_front + shortest_path_back[1:], weight_front + weight_back
def return_path_and_weight_back_meet_front(c_f_f, c_f_b, c_b, s, g):
shortest_path_front, weight_front = return_path_and_weight_back(c_f_f, c_b, s)
shortest_path_back, weight_back = return_path_and_weight_back(c_f_b, c_b, g)
shortest_path_back.reverse()
return shortest_path_front + shortest_path_back[1:], weight_front + weight_back
for edge in graph.keys():
point_set[edge[0]].append(edge[1])
point_set[edge[1]].append(edge[0])
open_set_front = set()
open_set_front.add(start)
open_set_back = set()
open_set_back.add(goal)
came_from_front = {}
came_from_back = {}
g_score_front = {k: float('inf') for k in point_set.keys()}
g_score_front[start] = 0
g_score_back = {k: float('inf') for k in point_set.keys()}
g_score_back[goal] = 0
f_score_front = {k: float('inf') for k in point_set.keys()}
f_score_front[start] = h(start, goal, graph)
f_score_back = {k: float('inf') for k in point_set.keys()}
f_score_back[goal] = h(goal, start, graph)
while len(open_set_front) > 0 and len(open_set_back) > 0:
current_front = list(open_set_front)[0]
current_back = list(open_set_back)[0]
for k in open_set_front:
if f_score_front[k] < f_score_front[current_front]:
current_front = k
for k in open_set_back:
if f_score_back[k] < f_score_back[current_back]:
current_back = k
if current_front == goal:
return return_path_and_weight_front(came_from_front, current_front, start)
if current_back == start:
return return_path_and_weight_back(came_from_back, current_back, goal)
if current_front in came_from_back.keys():
return return_path_and_weight_front_meet_back(came_from_front, came_from_back, current_front, start, goal)
if current_back in came_from_front.keys():
return return_path_and_weight_back_meet_front(came_from_front, came_from_back, current_back, start, goal)
open_set_front.remove(current_front)
open_set_back.remove(current_back)
for neighbor in point_set[current_front]:
tentative_g_score = g_score_front[current_front]
if current_front > neighbor:
tentative_g_score += graph[(current_front, neighbor)]
else:
tentative_g_score += graph[(neighbor, current_front)]
if tentative_g_score < g_score_front[neighbor]:
came_from_front[neighbor] = current_front
g_score_front[neighbor] = tentative_g_score
f_score_front[neighbor] = g_score_front[neighbor] + h(neighbor, goal, graph)
if neighbor not in open_set_front:
open_set_front.add(neighbor)
for neighbor in point_set[current_back]:
tentative_g_score = g_score_back[current_back]
if current_back > neighbor:
tentative_g_score += graph[(current_back, neighbor)]
else:
tentative_g_score += graph[(neighbor, current_back)]
if tentative_g_score < g_score_back[neighbor]:
came_from_back[neighbor] = current_back
g_score_back[neighbor] = tentative_g_score
f_score_back[neighbor] = g_score_back[neighbor] + h(neighbor, goal, graph)
if neighbor not in open_set_back:
open_set_back.add(neighbor)
if __name__ == "__main__":
g = {
(2, 1): 3,
(3, 2): 2,
(5, 3): 1,
(9, 5): 5,
(10, 9): 4,
(9, 4): 3,
(4, 1): 4,
(7, 1): 6,
(3, 1): 4,
(6, 2): 3,
(8, 6): 8,
(8, 3): 2
}
v = dict()
for i in g.keys():
v[i[0]] = []
v[i[1]] = []
print(bidirectional_algorithm(g, v, 7, 8, heuristic_cost))