praca_magisterska/algorithms/a_star.py

102 lines
3.0 KiB
Python
Raw Normal View History

import fibheap
def heuristic_cost(start, goal, graph):
return 0
def a_star_algorithm(graph, start, goal, h=heuristic_cost, is_directed=False):
def return_path_and_weight(c_f, c, s):
current_node = c_f[c]
shortest_path = [c, current_node]
while current_node != s:
current_node = c_f[current_node]
shortest_path.append(current_node)
weight = 0
shortest_path.reverse()
for k in range(len(shortest_path) - 1):
if not is_directed:
if shortest_path[k] > shortest_path[k+1]:
weight += graph[(shortest_path[k], shortest_path[k+1])]
else:
weight += graph[(shortest_path[k + 1], shortest_path[k])]
else:
weight += graph[(shortest_path[k], shortest_path[k + 1])]
return shortest_path, weight
point_set = dict()
for arc in g.keys():
point_set[arc[0]] = []
point_set[arc[1]] = []
for arc in graph.keys():
point_set[arc[0]].append(arc[1])
if not is_directed:
point_set[arc[1]].append(arc[0])
pred = dict()
node_heap = fibheap.makefheap()
fibheap.fheappush(node_heap, 0, start)
g_score = {k: float('inf') for k in point_set.keys()}
g_score[start] = 0
f_score = {k: float('inf') for k in point_set.keys()}
f_score[start] = h(start, goal, graph)
while node_heap.num_nodes > 0:
# current = list(open_set)[0]
# for k in open_set:
# if f_score[k] < f_score[current]:
# current = k
current = fibheap.fheappop(node_heap)
if current[1] == goal:
return return_path_and_weight(pred, goal, start)
for neighbor in point_set[current[1]]:
tentative_g_score = g_score[current[1]]
if not is_directed:
if current[1] > neighbor:
tentative_g_score += graph[(current[1], neighbor)]
else:
tentative_g_score += graph[(neighbor, current[1])]
else:
tentative_g_score += graph[(current[1], neighbor)]
if tentative_g_score < g_score[neighbor]:
g_score[neighbor] = tentative_g_score
f_score[neighbor] = g_score[neighbor] + h(neighbor, goal, graph)
fibheap.fheappush(node_heap, f_score[neighbor], neighbor)
pred[neighbor] = current[1]
if __name__ == "__main__":
g = {
(2, 1): 3,
(3, 2): 2,
(5, 3): 1,
(9, 5): 5,
(10, 9): 4,
(9, 4): 3,
(4, 1): 4,
(7, 1): 6,
(3, 1): 4,
(6, 2): 3,
(8, 6): 8,
2021-11-15 15:01:34 +01:00
(8, 3): 2,
(9, 1): 8
}
g2 = {
(4, 1): 6,
(1, 3): 4,
(1, 2): 2,
(2, 4): 5,
(3, 4): 1,
(5, 3): 1
}
print(a_star_algorithm(g, 7, 10, heuristic_cost))
print(a_star_algorithm(g2, 1, 4, heuristic_cost, is_directed=True))
print(a_star_algorithm(g2, 1, 5, heuristic_cost, is_directed=True))