def heuristic_cost(start, goal, graph): return 0 def a_star_algorithm(graph, start, goal, h=heuristic_cost, is_directed=False): def return_path_and_weight(c_f, c, s): current_node = c_f[c] shortest_path = [c, current_node] while current_node != s: current_node = c_f[current_node] shortest_path.append(current_node) weight = 0 shortest_path.reverse() for k in range(len(shortest_path) - 1): if not is_directed: if shortest_path[k] > shortest_path[k+1]: weight += graph[(shortest_path[k], shortest_path[k+1])] else: weight += graph[(shortest_path[k + 1], shortest_path[k])] else: weight += graph[(shortest_path[k], shortest_path[k + 1])] return shortest_path, weight point_set = dict() for arc in g.keys(): point_set[arc[0]] = [] point_set[arc[1]] = [] for arc in graph.keys(): point_set[arc[0]].append(arc[1]) if not is_directed: point_set[arc[1]].append(arc[0]) open_set = set() open_set.add(start) came_from = {} g_score = {k: float('inf') for k in point_set.keys()} g_score[start] = 0 f_score = {k: float('inf') for k in point_set.keys()} f_score[start] = h(start, goal, graph) while len(open_set) > 0: current = list(open_set)[0] for k in open_set: if f_score[k] < f_score[current]: current = k if current == goal: return return_path_and_weight(came_from, current, start) open_set.remove(current) for neighbor in point_set[current]: tentative_g_score = g_score[current] if not is_directed: if current > neighbor: tentative_g_score += graph[(current, neighbor)] else: tentative_g_score += graph[(neighbor, current)] else: tentative_g_score += graph[(current, neighbor)] if tentative_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = tentative_g_score f_score[neighbor] = g_score[neighbor] + h(neighbor, goal, graph) if neighbor not in open_set: open_set.add(neighbor) if __name__ == "__main__": g = { (2, 1): 3, (3, 2): 2, (5, 3): 1, (9, 5): 5, (10, 9): 4, (9, 4): 3, (4, 1): 4, (7, 1): 6, (3, 1): 4, (6, 2): 3, (8, 6): 8, (8, 3): 2, (9, 1): 8 } g2 = { (4, 1): 6, (1, 3): 4, (1, 2): 2, (2, 4): 5, (3, 4): 1, (5, 3): 1 } print(a_star_algorithm(g, 7, 10, heuristic_cost)) print(a_star_algorithm(g2, 1, 4, heuristic_cost, is_directed=True)) print(a_star_algorithm(g2, 1, 5, heuristic_cost, is_directed=True))