def heuristic_cost(start, goal, graph): return 0 def bidirectional_algorithm(graph, start, goal, h=heuristic_cost, is_directed=False): def return_path_and_weight_front(c_f, c, s): current_node = c_f[c] shortest_path = [c, current_node] while current_node != s: current_node = c_f[current_node] shortest_path.append(current_node) weight = 0 for k in range(len(shortest_path) - 1): if not is_directed: if shortest_path[k] > shortest_path[k+1]: weight += graph[(shortest_path[k], shortest_path[k+1])] else: weight += graph[(shortest_path[k + 1], shortest_path[k])] else: weight += graph[(shortest_path[k + 1], shortest_path[k])] return shortest_path, weight def return_path_and_weight_back(c_f, c, s): current_node = c_f[c] shortest_path = [c, current_node] while current_node != s: current_node = c_f[current_node] shortest_path.append(current_node) weight = 0 shortest_path.reverse() for k in range(len(shortest_path) - 1): if not is_directed: if shortest_path[k] > shortest_path[k+1]: weight += graph[(shortest_path[k], shortest_path[k+1])] else: weight += graph[(shortest_path[k + 1], shortest_path[k])] else: weight += graph[(shortest_path[k + 1], shortest_path[k])] return shortest_path, weight def return_path_and_weight_front_meet_back(c_f_f, c_f_b, c_f, s, g): shortest_path_front, weight_front = return_path_and_weight_front(c_f_f, c_f, s) shortest_path_back, weight_back = return_path_and_weight_back(c_f_b, c_f, g) shortest_path_back.reverse() shortest_path_front.reverse() return shortest_path_front + shortest_path_back[1:], weight_front + weight_back def return_path_and_weight_back_meet_front(c_f_f, c_f_b, c_b, s, g): shortest_path_front, weight_front = return_path_and_weight_front(c_f_f, c_b, s) shortest_path_back, weight_back = return_path_and_weight_back(c_f_b, c_b, g) shortest_path_back.reverse() shortest_path_front.reverse() return shortest_path_front + shortest_path_back[1:], weight_front + weight_back point_set_front = dict() point_set_back = dict() for arc in g.keys(): point_set_front[arc[0]] = [] point_set_front[arc[1]] = [] point_set_back[arc[0]] = [] point_set_back[arc[1]] = [] for arc in graph.keys(): point_set_front[arc[0]].append(arc[1]) if not is_directed: point_set_back[arc[1]].append(arc[0]) point_set_front[arc[1]].append(arc[0]) point_set_back[arc[0]].append(arc[1]) else: point_set_back[arc[1]].append(arc[0]) open_set_front = set() open_set_front.add(start) open_set_back = set() open_set_back.add(goal) came_from_front = {} came_from_back = {} g_score_front = {k: float('inf') for k in point_set_front.keys()} g_score_front[start] = 0 g_score_back = {k: float('inf') for k in point_set_back.keys()} g_score_back[goal] = 0 f_score_front = {k: float('inf') for k in point_set_front.keys()} f_score_front[start] = h(start, goal, graph) f_score_back = {k: float('inf') for k in point_set_back.keys()} f_score_back[goal] = h(goal, start, graph) while len(open_set_front) > 0 and len(open_set_back) > 0: current_front = list(open_set_front)[0] current_back = list(open_set_back)[0] for k in open_set_front: if f_score_front[k] < f_score_front[current_front]: current_front = k for k in open_set_back: if f_score_back[k] < f_score_back[current_back]: current_back = k if current_front == goal: return return_path_and_weight_front(came_from_front, current_front, start) if current_back == start: return return_path_and_weight_back(came_from_back, current_back, goal) if current_front in came_from_back.keys() and current_back in came_from_front.keys(): path1, weight1 = return_path_and_weight_front_meet_back(came_from_front, came_from_back, current_front, start, goal) path2, weight2 = return_path_and_weight_back_meet_front(came_from_front, came_from_back, current_back, start, goal) if weight1 < weight2: return path1, weight1 return path2, weight2 if current_front in came_from_back.keys(): return return_path_and_weight_front_meet_back(came_from_front, came_from_back, current_front, start, goal) if current_back in came_from_front.keys(): return return_path_and_weight_back_meet_front(came_from_front, came_from_back, current_back, start, goal) open_set_front.remove(current_front) open_set_back.remove(current_back) for neighbor in point_set_front[current_front]: tentative_g_score = g_score_front[current_front] if not is_directed: if current_front > neighbor: tentative_g_score += graph[(current_front, neighbor)] else: tentative_g_score += graph[(neighbor, current_front)] else: tentative_g_score += graph[(current_front, neighbor)] if tentative_g_score < g_score_front[neighbor]: came_from_front[neighbor] = current_front g_score_front[neighbor] = tentative_g_score f_score_front[neighbor] = g_score_front[neighbor] + h(neighbor, goal, graph) if neighbor not in open_set_front: open_set_front.add(neighbor) for neighbor in point_set_back[current_back]: tentative_g_score = g_score_back[current_back] if not is_directed: if current_back > neighbor: tentative_g_score += graph[(current_back, neighbor)] else: tentative_g_score += graph[(neighbor, current_back)] else: tentative_g_score += graph[(neighbor, current_back)] if tentative_g_score < g_score_back[neighbor]: came_from_back[neighbor] = current_back g_score_back[neighbor] = tentative_g_score f_score_back[neighbor] = g_score_back[neighbor] + h(neighbor, goal, graph) if neighbor not in open_set_back: open_set_back.add(neighbor) if __name__ == "__main__": g = { (2, 1): 3, (3, 2): 2, (5, 3): 1, (9, 5): 5, (10, 9): 4, (9, 4): 3, (4, 1): 4, (7, 1): 6, (3, 1): 4, (6, 2): 3, (8, 6): 8, (8, 3): 2, (9, 1): 8 } g2 = { (4, 1): 6, (1, 3): 4, (1, 2): 2, (2, 4): 5, (3, 4): 1, (5, 3): 1 } # print(bidirectional_algorithm(g, 7, 10, heuristic_cost)) # print(bidirectional_algorithm(g2, 1, 4, heuristic_cost, is_directed=True)) # print(bidirectional_algorithm(g2, 1, 5, heuristic_cost, is_directed=True))