Add sacred

This commit is contained in:
Zofia Galla 2021-05-16 11:55:28 +02:00
parent 8439d39d7b
commit 02fae476bf
3 changed files with 48 additions and 19 deletions

View File

@ -16,7 +16,8 @@ RUN pip3 install pandas
RUN pip3 install seaborn RUN pip3 install seaborn
RUN pip3 install matplotlib RUN pip3 install matplotlib
RUN pip3 install --no-cache-dir tensorflow RUN pip3 install --no-cache-dir tensorflow
RUN pip3 install sacred
RUN pip3 install pymongo
CMD ./run.sh CMD ./run.sh
CMD ./run_training.sh

View File

@ -27,7 +27,7 @@ pipeline {
} }
stage('Archive artifacts') { stage('Archive artifacts') {
steps{ steps{
archiveArtifacts artifacts: 'model_movies.h5' archiveArtifacts artifacts: 'model_movies.h5,my_runs/**'
} }
} }
} }

View File

@ -6,6 +6,23 @@ from tensorflow import convert_to_tensor
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sacred.observers import MongoObserver
from datetime import datetime
ex = Experiment("434684", interactive=False, save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
learning_rate = float(sys.argv[1])
def prepare_train_model(learning_rate, _run):
_run.info["prepare_model"] = str(datetime.now())
movies_train = pd.read_csv('movies_train.csv') movies_train = pd.read_csv('movies_train.csv')
@ -23,11 +40,22 @@ model.add(layers.Dense(1))
model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate)) model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate))
model.fit( _run.info["train model"] = str(datetime.now())
history = model.fit(
x = convert_to_tensor(x_train, np.float32), x = convert_to_tensor(x_train, np.float32),
y = y_train, y = y_train,
verbose=0, epochs=99) verbose=0, epochs=99)
loss = history.history['loss'][-1]
_run.info["Loss"] = str(loss)
model.save('model_movies.h5') model.save('model_movies.h5')
@ex.main
def my_main(learning_rate):
print(prepare_train_model())
r = ex.run()
ex.add_artifact("model_movies.h5")