Add sacred
This commit is contained in:
parent
8439d39d7b
commit
02fae476bf
@ -16,7 +16,8 @@ RUN pip3 install pandas
|
||||
RUN pip3 install seaborn
|
||||
RUN pip3 install matplotlib
|
||||
RUN pip3 install --no-cache-dir tensorflow
|
||||
RUN pip3 install sacred
|
||||
RUN pip3 install pymongo
|
||||
|
||||
CMD ./run.sh
|
||||
CMD ./run_training.sh
|
||||
|
||||
|
@ -27,7 +27,7 @@ pipeline {
|
||||
}
|
||||
stage('Archive artifacts') {
|
||||
steps{
|
||||
archiveArtifacts artifacts: 'model_movies.h5'
|
||||
archiveArtifacts artifacts: 'model_movies.h5,my_runs/**'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -6,28 +6,56 @@ from tensorflow import convert_to_tensor
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
movies_train = pd.read_csv('movies_train.csv')
|
||||
|
||||
x_train = movies_train.copy()
|
||||
y_train = x_train.pop('rottentomatoes_audience_score')
|
||||
x_train.pop('Unnamed: 0')
|
||||
|
||||
learning_rate = float(sys.argv[1])
|
||||
model = Sequential()
|
||||
model.add(layers.Input(shape=(22,)))
|
||||
model.add(layers.Dense(64))
|
||||
model.add(layers.Dense(64))
|
||||
model.add(layers.Dense(32))
|
||||
model.add(layers.Dense(1))
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate))
|
||||
|
||||
model.fit(
|
||||
x = convert_to_tensor(x_train, np.float32),
|
||||
y = y_train,
|
||||
verbose=0, epochs=99)
|
||||
|
||||
model.save('model_movies.h5')
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
from sacred.observers import MongoObserver
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
ex = Experiment("434684", interactive=False, save_git_info=False)
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
learning_rate = float(sys.argv[1])
|
||||
|
||||
|
||||
def prepare_train_model(learning_rate, _run):
|
||||
_run.info["prepare_model"] = str(datetime.now())
|
||||
|
||||
movies_train = pd.read_csv('movies_train.csv')
|
||||
|
||||
x_train = movies_train.copy()
|
||||
y_train = x_train.pop('rottentomatoes_audience_score')
|
||||
x_train.pop('Unnamed: 0')
|
||||
|
||||
learning_rate = float(sys.argv[1])
|
||||
model = Sequential()
|
||||
model.add(layers.Input(shape=(22,)))
|
||||
model.add(layers.Dense(64))
|
||||
model.add(layers.Dense(64))
|
||||
model.add(layers.Dense(32))
|
||||
model.add(layers.Dense(1))
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate))
|
||||
|
||||
_run.info["train model"] = str(datetime.now())
|
||||
|
||||
history = model.fit(
|
||||
x = convert_to_tensor(x_train, np.float32),
|
||||
y = y_train,
|
||||
verbose=0, epochs=99)
|
||||
|
||||
loss = history.history['loss'][-1]
|
||||
_run.info["Loss"] = str(loss)
|
||||
model.save('model_movies.h5')
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(learning_rate):
|
||||
print(prepare_train_model())
|
||||
|
||||
|
||||
r = ex.run()
|
||||
ex.add_artifact("model_movies.h5")
|
||||
|
Loading…
Reference in New Issue
Block a user