Update for Zadanie 6.2 - evaluation
This commit is contained in:
parent
8410fda504
commit
6a4fba089e
36
Jenkinsfile_evaluation
Normal file
36
Jenkinsfile_evaluation
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
pipeline {
|
||||||
|
agent {dockerfile true}
|
||||||
|
parameters {
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying test data',
|
||||||
|
name: 'BUILD_SELECTOR_CREATE_DATASET')
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: upstream(),
|
||||||
|
description: 'Which build to use for copying trained model',
|
||||||
|
name: 'BUILD_SELECTOR_TRAINING')
|
||||||
|
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH'
|
||||||
|
}
|
||||||
|
stages {
|
||||||
|
stage('copyArtifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-create-dataset', selector: buildParameter('BUILD_SELECTOR_CREATE_DATASET')
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-training/${params.BRANCH}', selector: buildParameter('BUILD_SELECTOR_TRAINING')
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-evaluation/${params.BRANCH}', selector: lastSuccessful(), optional: True
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Sh script') {
|
||||||
|
steps {
|
||||||
|
sh 'chmod +x run_evaluation.sh'
|
||||||
|
sh './run_evaluation.sh'
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Archive artifacts') {
|
||||||
|
steps{
|
||||||
|
archiveArtifacts artifacts: 'evaluation.txt', 'mean_square_error.png'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
32
ium_zadanie6_evaluation.py
Normal file
32
ium_zadanie6_evaluation.py
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
from tf.keras.models import Sequential
|
||||||
|
from tf.keras import layers
|
||||||
|
# from keras.layers import Flatten,Dense,Dropout, GlobalAveragePooling2D
|
||||||
|
from tf.keras.optimizers import Adam
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
movies_test = pd.read_csv('movies_test.csv')
|
||||||
|
|
||||||
|
x_test = movies_test.copy()
|
||||||
|
y_test = x_test.pop('rottentomatoes_audience_score')
|
||||||
|
x_test.pop('Unnamed: 0')
|
||||||
|
|
||||||
|
model = keras.models.load_model('model_movies')
|
||||||
|
|
||||||
|
y_predicted = model.predict(x_test, batch_size=64)
|
||||||
|
|
||||||
|
error = mean_squared_error(y_test, y_predicted)
|
||||||
|
|
||||||
|
with open('evaluation.txt', 'a+') as f:
|
||||||
|
f.write('%d\n' % error)
|
||||||
|
|
||||||
|
errors = np.genfromtxt('evaluation.txt')
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
plt.plot(errors)
|
||||||
|
plt.title('Evaluation of trained models')
|
||||||
|
plt.ylabel('Mean squared error')
|
||||||
|
fig.savefig('mean_squared_error.png')
|
2
run_evaluation.sh
Normal file
2
run_evaluation.sh
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
python3 ium_zadanie6_evaluation.py
|
Loading…
Reference in New Issue
Block a user