#!/usr/bin/env python3.7 import pandas as pd import seaborn as sns import datetime import matplotlib.pyplot as plt netflix=pd.read_csv('netflix_titles_enriched.csv') netflix_cleaned = netflix[netflix.rottentomatoes_audience_score > 0].sort_values(by = 'rottentomatoes_audience_score') netflix_cleaned.rottentomatoes_audience_score /= 100 netflix_cleaned.drop(['rottentomatoes_audience_#reviews', 'rottentomatoes_audience_review', 'rottentomatoes_tomatometer_score', 'rottentomatoes_critics_#reviews', 'rottentomatoes_critic_review'], axis = 1) netflix_cleaned.date_added = netflix_cleaned.date_added.dropna().apply(lambda x: datetime.datetime.strptime(x[1:] if x[0] == ' ' else x, '%B %d, %Y')) netflix_cleaned.update(netflix_cleaned.select_dtypes(include = 'object').apply(lambda col: col.str.lower())) movies = netflix_cleaned[netflix_cleaned.type == 'movie'] series = netflix_cleaned[netflix_cleaned.type == 'tv show'] movies.duration = movies.duration.str.extract(r'(\d*)( min)')[0].astype('int32') from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer() movies = movies.join(pd.DataFrame(mlb.fit_transform(movies.pop('listed_in').str.split(', ')), columns=mlb.classes_, index=movies.index)) movies.drop(['movies'], axis = 1) import sklearn from sklearn.model_selection import train_test_split movies_train, movies_test = sklearn.model_selection.train_test_split(movies,test_size=0.20, random_state=42) movies_test, movies_val = sklearn.model_selection.train_test_split(movies_test,test_size=0.50, random_state=42) movies_subsets = [movies_train, movies_test, movies_val] for subset in movies_subsets: print(subset.shape[0]) print(subset.describe(include='all')) movies_subsets = pd.concat(movies_subsets, keys = ['Train','Test','Validation']) movies_subsets = movies_subsets.reset_index() ax = sns.boxplot(data = movies_subsets, x = 'level_0', y = 'rottentomatoes_audience_score') ax.set(title = 'Audience score distribution between subsets', ylabel = 'Audience score on Rotten Tomatoes', xlabel = 'SUBSET') plt.show(ax) series.duration = series.duration.str.extract(r'(\d*)( seasons?)')[0].astype('int32') series = series.rename(columns = {'Unnamed: 0': 'Season'}) series['Id'] = series.Season.str.extract(r'(s\d+)(|\',\ )(\d+)')[0] series.Season = series.Season.str.extract(r'(s\d+)(|\',\ )(\d+)')[2].astype('int32') series = series[series.Season > 0] mlb = MultiLabelBinarizer() series = series.join(pd.DataFrame(mlb.fit_transform(series.pop('listed_in').str.split(', ')), columns=mlb.classes_, index=series.index)) series_train, series_test = sklearn.model_selection.train_test_split(series,test_size=0.20, random_state=42) series_test, series_val = sklearn.model_selection.train_test_split(series_test,test_size=0.50, random_state=42) series_subsets = [series_train, series_test, series_val] for subset in series_subsets: print(subset.shape[0]) print(subset.describe(include='all')) series_subsets = pd.concat(series_subsets, keys = ['Train','Test','Validation']) series_subsets = series_subsets.reset_index() ax = sns.boxplot(data = series_subsets, x = 'level_0', y = 'rottentomatoes_audience_score') ax.set(title = 'Audience score distribution between subsets', ylabel = 'Audience score on Rotten Tomatoes', xlabel = 'SUBSET') plt.show(ax)