import tensorflow as tf import sys from tf.keras import layers # from keras.layers import Flatten,Dense,Dropout, GlobalAveragePooling2D from tf.keras.optimizers import Adam import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error movies_train = pd.read_csv('movies_train.csv') x_train = movies_train.copy() y_train = x_train.pop('rottentomatoes_audience_score') x_train.pop('Unnamed: 0') learning_rate = sys.argv[1] model = tf.keras.Sequential() model.add(layers.Input(shape=(22,))) model.add(layers.Dense(64)) model.add(layers.Dense(64)) model.add(layers.Dense(32)) model.add(layers.Dense(1)) model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate)) model.fit( x = tf.convert_to_tensor(x_train, np.float32), y = y_train, verbose=0, epochs=99) model.save('model_movies')