47 lines
1.2 KiB
Python
47 lines
1.2 KiB
Python
import sys
|
|
from tensorflow.keras import layers, Sequential
|
|
# from keras.layers import Flatten,Dense,Dropout, GlobalAveragePooling2D
|
|
from tensorflow.keras.optimizers import Adam
|
|
from tensorflow import convert_to_tensor
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sklearn.metrics import mean_squared_error
|
|
from sacred.observers import FileStorageObserver, MongoObserver
|
|
from sacred import Experiment
|
|
from sacred.observers import MongoObserver
|
|
from datetime import datetime
|
|
import mlflow
|
|
|
|
with mlflow.start_run():
|
|
learning_rate = float(sys.argv[1])
|
|
|
|
movies_train = pd.read_csv('movies_train.csv')
|
|
|
|
x_train = movies_train.copy()
|
|
y_train = x_train.pop('rottentomatoes_audience_score')
|
|
x_train.pop('Unnamed: 0')
|
|
|
|
learning_rate = float(sys.argv[1])
|
|
model = Sequential()
|
|
model.add(layers.Input(shape=(22,)))
|
|
model.add(layers.Dense(64))
|
|
model.add(layers.Dense(64))
|
|
model.add(layers.Dense(32))
|
|
model.add(layers.Dense(1))
|
|
|
|
mlflow.log_param("learning_rate", learning_rate)
|
|
|
|
model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate))
|
|
|
|
|
|
history = model.fit(
|
|
x = convert_to_tensor(x_train, np.float32),
|
|
y = y_train,
|
|
verbose=0, epochs=99)
|
|
|
|
loss = history.history['loss'][-1]
|
|
|
|
mlflow.log_metric("Loss", loss)
|
|
model.save('model_movies.h5')
|
|
|