63 lines
1.7 KiB
Python
63 lines
1.7 KiB
Python
import sys
|
|
from tensorflow.keras import layers, Sequential
|
|
# from keras.layers import Flatten,Dense,Dropout, GlobalAveragePooling2D
|
|
from tensorflow.keras.optimizers import Adam
|
|
from tensorflow import convert_to_tensor
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sklearn.metrics import mean_squared_error
|
|
from sacred.observers import FileStorageObserver, MongoObserver
|
|
from sacred import Experiment
|
|
from sacred.observers import MongoObserver
|
|
from datetime import datetime
|
|
|
|
|
|
ex = Experiment("434684", interactive=False, save_git_info=False)
|
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
|
ex.observers.append(FileStorageObserver('my_runs'))
|
|
|
|
@ex.config
|
|
def my_config():
|
|
learning_rate = float(sys.argv[1])
|
|
|
|
|
|
@ex.capture
|
|
def prepare_train_model(learning_rate, _run):
|
|
_run.info["prepare_model"] = str(datetime.now())
|
|
|
|
movies_train = pd.read_csv('movies_train.csv')
|
|
|
|
x_train = movies_train.copy()
|
|
y_train = x_train.pop('rottentomatoes_audience_score')
|
|
x_train.pop('Unnamed: 0')
|
|
|
|
learning_rate = float(sys.argv[1])
|
|
model = Sequential()
|
|
model.add(layers.Input(shape=(22,)))
|
|
model.add(layers.Dense(64))
|
|
model.add(layers.Dense(64))
|
|
model.add(layers.Dense(32))
|
|
model.add(layers.Dense(1))
|
|
|
|
model.compile(loss='mean_absolute_error', optimizer=Adam(learning_rate))
|
|
|
|
_run.info["train model"] = str(datetime.now())
|
|
|
|
history = model.fit(
|
|
x = convert_to_tensor(x_train, np.float32),
|
|
y = y_train,
|
|
verbose=0, epochs=99)
|
|
|
|
loss = history.history['loss'][-1]
|
|
_run.info["Loss"] = str(loss)
|
|
model.save('model_movies.h5')
|
|
|
|
|
|
@ex.main
|
|
def my_main(learning_rate):
|
|
print(prepare_train_model())
|
|
|
|
|
|
r = ex.run()
|
|
ex.add_artifact("model_movies.h5")
|