2023-05-10 20:30:03 +02:00
|
|
|
import pandas
|
|
|
|
import os
|
2023-05-11 21:24:52 +02:00
|
|
|
from sacred import Experiment
|
|
|
|
from sacred.observers import MongoObserver
|
|
|
|
from sacred.observers import FileStorageObserver
|
2023-05-10 20:30:03 +02:00
|
|
|
from keras.applications.densenet import layers
|
|
|
|
import tensorflow
|
|
|
|
|
2023-05-11 21:24:52 +02:00
|
|
|
exint = Experiment('z-s434686-training')
|
|
|
|
|
|
|
|
exint.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017',
|
|
|
|
db_name='sacred'))
|
|
|
|
exint.observers.append(FileStorageObserver('my_runs'))
|
|
|
|
@exint.config
|
|
|
|
def my_config():
|
|
|
|
EPOCHS = int(os.environ['EPOCHS'])
|
|
|
|
train_data_x = exint.open_resource('./X_train.csv', 'r')
|
|
|
|
games_all = train_data_x.copy()
|
|
|
|
games_predict = train_data_x.pop('User_Score')
|
|
|
|
normalize = layers.Normalization()
|
|
|
|
_run.info["epochs"] = EPOCHS
|
|
|
|
|
|
|
|
|
|
|
|
@exint.main
|
|
|
|
def my_main(EPOCHS, games_all, games_predict,normalize):
|
|
|
|
_run.info["prepare_message_ts"] = str(datetime.now())
|
|
|
|
normalize.adapt(games_all)
|
|
|
|
norm_games_model = tensorflow.keras.Sequential([
|
|
|
|
normalize,
|
|
|
|
layers.Dense(64),
|
|
|
|
layers.Dense(1)
|
|
|
|
])
|
|
|
|
norm_games_model.compile(
|
|
|
|
loss=tensorflow.keras.losses.MeanSquaredError(),
|
|
|
|
optimizer=tensorflow.keras.optimizers.Adam())
|
|
|
|
|
|
|
|
norm_games_model.fit(games_all, games_predict, epochs=EPOCHS)
|
|
|
|
|
|
|
|
norm_games_model.save('test')
|
|
|
|
print(f'done:')
|
|
|
|
|
|
|
|
exint.run()
|
|
|
|
exint.add_artifact("test")
|
|
|
|
exint.add_source_file('train.py')
|