2023-05-10 20:30:03 +02:00
|
|
|
import pandas
|
|
|
|
import os
|
|
|
|
|
|
|
|
from keras.applications.densenet import layers
|
|
|
|
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
import tensorflow
|
|
|
|
|
2023-05-10 22:39:12 +02:00
|
|
|
EPOCHS = int(os.environ['EPOCHS'])
|
2023-05-10 20:30:03 +02:00
|
|
|
|
2023-05-10 20:20:22 +02:00
|
|
|
train_data_x = pandas.read_csv('./X_train.csv')
|
|
|
|
|
|
|
|
|
|
|
|
games_all = train_data_x.copy()
|
|
|
|
games_predict = train_data_x.pop('User_Score')
|
|
|
|
normalize = layers.Normalization()
|
|
|
|
normalize.adapt(games_all)
|
|
|
|
|
|
|
|
norm_games_model = tensorflow.keras.Sequential([
|
|
|
|
normalize,
|
|
|
|
layers.Dense(64),
|
|
|
|
layers.Dense(1)
|
|
|
|
])
|
|
|
|
|
|
|
|
norm_games_model.compile(
|
|
|
|
loss=tensorflow.keras.losses.MeanSquaredError(),
|
|
|
|
optimizer=tensorflow.keras.optimizers.Adam())
|
|
|
|
|
2023-05-10 22:39:12 +02:00
|
|
|
norm_games_model.fit(games_all, games_predict, epochs=EPOCHS)
|
2023-05-10 20:20:22 +02:00
|
|
|
|
|
|
|
norm_games_model.save('test')
|