diff --git a/train.py b/train.py index ca3ab8e..e54ae26 100644 --- a/train.py +++ b/train.py @@ -1,31 +1,44 @@ import pandas import os - +from sacred import Experiment +from sacred.observers import MongoObserver +from sacred.observers import FileStorageObserver from keras.applications.densenet import layers - -from sklearn.model_selection import train_test_split import tensorflow -EPOCHS = int(os.environ['EPOCHS']) +exint = Experiment('z-s434686-training') -train_data_x = pandas.read_csv('./X_train.csv') +exint.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', + db_name='sacred')) +exint.observers.append(FileStorageObserver('my_runs')) +@exint.config +def my_config(): + EPOCHS = int(os.environ['EPOCHS']) + train_data_x = exint.open_resource('./X_train.csv', 'r') + games_all = train_data_x.copy() + games_predict = train_data_x.pop('User_Score') + normalize = layers.Normalization() + _run.info["epochs"] = EPOCHS -games_all = train_data_x.copy() -games_predict = train_data_x.pop('User_Score') -normalize = layers.Normalization() -normalize.adapt(games_all) +@exint.main +def my_main(EPOCHS, games_all, games_predict,normalize): + _run.info["prepare_message_ts"] = str(datetime.now()) + normalize.adapt(games_all) + norm_games_model = tensorflow.keras.Sequential([ + normalize, + layers.Dense(64), + layers.Dense(1) + ]) + norm_games_model.compile( + loss=tensorflow.keras.losses.MeanSquaredError(), + optimizer=tensorflow.keras.optimizers.Adam()) -norm_games_model = tensorflow.keras.Sequential([ - normalize, - layers.Dense(64), - layers.Dense(1) -]) + norm_games_model.fit(games_all, games_predict, epochs=EPOCHS) -norm_games_model.compile( - loss=tensorflow.keras.losses.MeanSquaredError(), - optimizer=tensorflow.keras.optimizers.Adam()) + norm_games_model.save('test') + print(f'done:') -norm_games_model.fit(games_all, games_predict, epochs=EPOCHS) - -norm_games_model.save('test') \ No newline at end of file +exint.run() +exint.add_artifact("test") +exint.add_source_file('train.py')