diff --git a/create-dataset.py b/create-dataset.py index 8a05416..bc20f53 100644 --- a/create-dataset.py +++ b/create-dataset.py @@ -1,6 +1,10 @@ import pandas import os + +from keras.applications.densenet import layers + from sklearn.model_selection import train_test_split +import tensorflow CUTOFF = int(os.environ['CUTOFF']) @@ -10,13 +14,16 @@ video_games = pandas.read_csv('./ium_z434686/Video_Games_Sales_as_at_22_Dec_2016 engine='python', encoding='ISO-8859-1', sep=',') + # DROP NA FIELDS video_games = video_games.dropna() +video_games = video_games.drop(video_games.columns[[0, 1, 3, 4, 13, 14, 15]], axis=1) # CUT OFF DATASET TO X LINES video_games = video_games.sample(CUTOFF) -X, Y = video_games, video_games +X = video_games.copy() +Y = pandas.DataFrame(video_games.pop('User_Score')) # SPLIT BETWEEN DEV, TRAINS, AND TEST X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1) @@ -25,3 +32,31 @@ X_dev, X_test, Y_dev, Y_test = train_test_split(X_temp, Y_temp, test_size=0.3, r X_train.to_csv('X_train.csv', index=False) X_dev.to_csv('X_dev.csv', index=False) X_test.to_csv('X_test.csv', index=False) +Y_test.to_csv('Y_test.csv', index=False) +Y_train.to_csv('Y_train.csv', index=False) +Y_dev.to_csv('Y_dev.csv', index=False) + +train_data_x = pandas.read_csv('./X_train.csv') + + +train_data_x = pandas.read_csv('./X_train.csv') + + +games_all = train_data_x.copy() +games_predict = train_data_x.pop('User_Score') +normalize = layers.Normalization() +normalize.adapt(games_all) + +norm_games_model = tensorflow.keras.Sequential([ + normalize, + layers.Dense(64), + layers.Dense(1) +]) + +norm_games_model.compile( + loss=tensorflow.keras.losses.MeanSquaredError(), + optimizer=tensorflow.keras.optimizers.Adam()) + +norm_games_model.fit(games_all, games_predict, epochs=500) + +norm_games_model.save('test')