import pandas import os from keras.applications.densenet import layers from sklearn.model_selection import train_test_split import tensorflow train_data_x = pandas.read_csv('./X_train.csv') games_all = train_data_x.copy() games_predict = train_data_x.pop('User_Score') normalize = layers.Normalization() normalize.adapt(games_all) norm_games_model = tensorflow.keras.Sequential([ normalize, layers.Dense(64), layers.Dense(1) ]) norm_games_model.compile( loss=tensorflow.keras.losses.MeanSquaredError(), optimizer=tensorflow.keras.optimizers.Adam()) norm_games_model.fit(games_all, games_predict, epochs=500) norm_games_model.save('test')