import pandas import os from keras.applications.densenet import layers from sklearn.model_selection import train_test_split import tensorflow CUTOFF = int(os.environ['CUTOFF']) # READ DATA video_games = pandas.read_csv('./ium_z434686/Video_Games_Sales_as_at_22_Dec_2016.csv', engine='python', encoding='ISO-8859-1', sep=',') # DROP NA FIELDS video_games = video_games.dropna() video_games = video_games.drop(video_games.columns[[0, 1, 3, 4, 13, 14, 15]], axis=1) # CUT OFF DATASET TO X LINES video_games = video_games.sample(CUTOFF) X = video_games.copy() Y = pandas.DataFrame(video_games.pop('User_Score')) # SPLIT BETWEEN DEV, TRAINS, AND TEST X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1) X_dev, X_test, Y_dev, Y_test = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=1) X_train.to_csv('X_train.csv', index=False) X_dev.to_csv('X_dev.csv', index=False) X_test.to_csv('X_test.csv', index=False) Y_test.to_csv('Y_test.csv', index=False) Y_train.to_csv('Y_train.csv', index=False) Y_dev.to_csv('Y_dev.csv', index=False) train_data_x = pandas.read_csv('./X_train.csv') games_all = train_data_x.copy() games_predict = train_data_x.pop('User_Score') normalize = layers.Normalization() normalize.adapt(games_all) norm_games_model = tensorflow.keras.Sequential([ normalize, layers.Dense(64), layers.Dense(1) ]) norm_games_model.compile( loss=tensorflow.keras.losses.MeanSquaredError(), optimizer=tensorflow.keras.optimizers.Adam()) norm_games_model.fit(games_all, games_predict, epochs=500) norm_games_model.save('test')