Zaktualizuj 'projekt.R'
This commit is contained in:
parent
5d44e8de2b
commit
e8cd163012
102
projekt.R
102
projekt.R
@ -4,11 +4,28 @@ library(dplyr) # Data manipulate
|
|||||||
library(shinythemes)
|
library(shinythemes)
|
||||||
library(plotly)
|
library(plotly)
|
||||||
|
|
||||||
|
library(sf)
|
||||||
|
library(rnaturalearth)
|
||||||
|
library(ggspatial)
|
||||||
|
library(ggrepel)
|
||||||
|
|
||||||
|
options(scipen=999)
|
||||||
|
|
||||||
CO_data <- read.csv("./data.csv", header= TRUE)
|
CO_data <- read.csv("./data.csv", header= TRUE)
|
||||||
|
|
||||||
col_names = colnames(CO_data)
|
CO_data2 <- CO_data[,-c(1,2,3)]
|
||||||
|
col_names = colnames(CO_data2)
|
||||||
|
|
||||||
|
|
||||||
countries <- unique(CO_data['country'])
|
countries <- unique(CO_data['country'])
|
||||||
|
years <- unique(sort(CO_data$year))
|
||||||
|
world <- ne_countries(scale = 'medium', returnclass = 'sf')
|
||||||
|
country_list <- unique(sort(world$name))
|
||||||
|
|
||||||
|
CO_data_filtered <- subset(CO_data, country %in% country_list)
|
||||||
|
|
||||||
|
only_co2_and_year <- CO_data[,c('year', 'country', 'co2')]
|
||||||
|
|
||||||
|
|
||||||
ui <- navbarPage(
|
ui <- navbarPage(
|
||||||
titlePanel(title=div(img(src="https://siw.amu.edu.pl/__data/assets/file/0004/162751/logo_wersja-podstawowa_granat_1.jpg", width = 50, height = 50), 'explore CO2 data')),
|
titlePanel(title=div(img(src="https://siw.amu.edu.pl/__data/assets/file/0004/162751/logo_wersja-podstawowa_granat_1.jpg", width = 50, height = 50), 'explore CO2 data')),
|
||||||
@ -36,8 +53,38 @@ ui <- navbarPage(
|
|||||||
'GDP',
|
'GDP',
|
||||||
plotlyOutput('gdp')
|
plotlyOutput('gdp')
|
||||||
),
|
),
|
||||||
|
tabPanel("Map: CO2 by year",
|
||||||
|
sidebarLayout(
|
||||||
|
sidebarPanel(
|
||||||
|
selectInput('year',
|
||||||
|
'Select year',
|
||||||
|
selected = '2011',
|
||||||
|
choices = years
|
||||||
|
)
|
||||||
|
),
|
||||||
|
|
||||||
|
mainPanel(
|
||||||
|
plotlyOutput('map'),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
tabPanel("Map: statistics in year 2011",
|
||||||
|
sidebarLayout(
|
||||||
|
sidebarPanel(
|
||||||
|
selectInput('category2',
|
||||||
|
'Select category',
|
||||||
|
selected = 'population',
|
||||||
|
choices = col_names
|
||||||
|
)
|
||||||
|
),
|
||||||
|
|
||||||
|
mainPanel(
|
||||||
|
plotlyOutput('map2'),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
),
|
||||||
tabPanel(
|
tabPanel(
|
||||||
'TOP Production',
|
'Biggest CO2 Production',
|
||||||
fluidRow(
|
fluidRow(
|
||||||
column(6,plotlyOutput(outputId="the_most_1")),
|
column(6,plotlyOutput(outputId="the_most_1")),
|
||||||
column(6,plotlyOutput(outputId="the_most_2")),
|
column(6,plotlyOutput(outputId="the_most_2")),
|
||||||
@ -45,7 +92,7 @@ ui <- navbarPage(
|
|||||||
)
|
)
|
||||||
),
|
),
|
||||||
tabPanel(
|
tabPanel(
|
||||||
'Smallest production',
|
'Smallest CO2 production',
|
||||||
fluidRow(
|
fluidRow(
|
||||||
column(6,plotlyOutput(outputId="the_least_1")),
|
column(6,plotlyOutput(outputId="the_least_1")),
|
||||||
column(6,plotlyOutput(outputId="the_least_2")),
|
column(6,plotlyOutput(outputId="the_least_2")),
|
||||||
@ -77,83 +124,100 @@ server <- function(input, output, session) {
|
|||||||
CO_data %>%
|
CO_data %>%
|
||||||
filter(country == input$country) %>%
|
filter(country == input$country) %>%
|
||||||
ggplot(aes(x = year, y = get(input$category))) +
|
ggplot(aes(x = year, y = get(input$category))) +
|
||||||
|
ylab(input$category) +
|
||||||
geom_line()
|
geom_line()
|
||||||
})
|
})
|
||||||
output$gdp <- renderPlotly({
|
output$gdp <- renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year == 2011) %>%
|
filter(year == 2011) %>%
|
||||||
ggplot(aes(x = gdp, y = co2, label = country)) +
|
ggplot(aes(x = gdp, y = co2, label = country)) +
|
||||||
geom_line() +
|
geom_line() +
|
||||||
geom_point() +
|
geom_point() +
|
||||||
|
ylim(0,10000) +
|
||||||
ggtitle('Placement of countries by CO2 and GDP production')
|
ggtitle('Placement of countries by CO2 and GDP production')
|
||||||
})
|
})
|
||||||
|
output$map = renderPlotly({
|
||||||
|
countries_data <- filter(only_co2_and_year, year==input$year)
|
||||||
|
data <- merge(world, countries_data, by.y="country", by.x="name")
|
||||||
|
ggplot(data = data) +
|
||||||
|
geom_sf(aes(fill = co2, label = name)) +
|
||||||
|
scale_fill_viridis_c(option = "plasma", trans = "sqrt") # colorblind-friendly palette
|
||||||
|
})
|
||||||
|
output$map2 = renderPlotly({
|
||||||
|
countries_data <- filter(CO_data, year==2011)
|
||||||
|
data2 <- merge(world, countries_data, by.y="country", by.x="name")
|
||||||
|
ggplot(data = data2) +
|
||||||
|
geom_sf(aes(fill = get(input$category2), label = input$category2)) +
|
||||||
|
labs(title=input$category2) +
|
||||||
|
scale_fill_discrete(labels = input$category2) +
|
||||||
|
scale_fill_viridis_c(option = "plasma", trans = "sqrt") # colorblind-friendly palette
|
||||||
|
})
|
||||||
output$the_most_1 = renderPlotly({
|
output$the_most_1 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_max(n=7, order_by = co2_per_gdp) %>%
|
slice_max(n=7, order_by = co2_per_gdp) %>%
|
||||||
ggplot(aes(x=country, y=co2_per_gdp, fill=country)) +
|
ggplot(aes(x=country, y=co2_per_gdp, fill=country)) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 per GDP') +
|
ylab('CO2 per GDP') +
|
||||||
ggtitle('The TOP production per GDP') +
|
ggtitle('the biggest CO2 production per GDP') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
output$the_most_2 = renderPlotly({
|
output$the_most_2 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_max(n=7, order_by = co2_per_capita) %>%
|
slice_max(n=7, order_by = co2_per_capita) %>%
|
||||||
ggplot(aes(x=country, y=co2_per_capita, fill=country), custom) +
|
ggplot(aes(x=country, y=co2_per_capita, fill=country), custom) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 per capita') +
|
ylab('CO2 per capita') +
|
||||||
ggtitle('The TOP production per capita') +
|
ggtitle('the biggest CO2 production per capita') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
output$the_most_3 = renderPlotly({
|
output$the_most_3 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_max(n=7, order_by = co2_per_capita) %>%
|
slice_max(n=7, order_by = co2) %>%
|
||||||
ggplot(aes(x=country, y=co2_per_capita, fill=country)) +
|
ggplot(aes(x=country, y=co2, fill=country)) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 overall') +
|
ylab('CO2 overall') +
|
||||||
ggtitle('The TOP production overall') +
|
ggtitle('the biggest CO2 production overall') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
output$the_least_1 = renderPlotly({
|
output$the_least_1 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_min(n=7, order_by = co2_per_gdp) %>%
|
slice_min(n=7, order_by = co2_per_gdp) %>%
|
||||||
ggplot(aes(x=country, y=co2_per_gdp, fill=country)) +
|
ggplot(aes(x=country, y=co2_per_gdp, fill=country)) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 per GDP') +
|
ylab('CO2 per GDP') +
|
||||||
ggtitle('The smalest production per GDP') +
|
ggtitle('the smallest CO2 production per GDP') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
output$the_least_2 = renderPlotly({
|
output$the_least_2 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_min(n=7, order_by = co2_per_capita) %>%
|
slice_min(n=7, order_by = co2_per_capita) %>%
|
||||||
ggplot(aes(x=country, y=co2_per_capita, fill=country)) +
|
ggplot(aes(x=country, y=co2_per_capita, fill=country)) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 per capita') +
|
ylab('CO2 per capita') +
|
||||||
ggtitle('The smalest production per capita') +
|
ggtitle('the smallest CO2 production per capita') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
output$the_least_3 = renderPlotly({
|
output$the_least_3 = renderPlotly({
|
||||||
CO_data %>%
|
CO_data_filtered %>%
|
||||||
filter(year==2011) %>%
|
filter(year==2011) %>%
|
||||||
slice_min(n=7, order_by = co2) %>%
|
slice_min(n=7, order_by = co2) %>%
|
||||||
ggplot(aes(x=country, y=co2, fill=country)) +
|
ggplot(aes(x=country, y=co2, fill=country)) +
|
||||||
xlab('Country') +
|
xlab('Country') +
|
||||||
ylab('CO2 overall') +
|
ylab('CO2 overall') +
|
||||||
ggtitle('The smalest production overall') +
|
ggtitle('the smallest CO2 production overall') +
|
||||||
theme(axis.text.x = element_blank()) +
|
theme(axis.text.x = element_blank()) +
|
||||||
geom_bar(stat='identity')
|
geom_bar(stat='identity')
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
shinyApp(ui = ui, server = server)
|
shinyApp(ui = ui, server = server)
|
Loading…
Reference in New Issue
Block a user