training changes
This commit is contained in:
parent
2d0e53d1eb
commit
18172eadf9
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -29,7 +29,7 @@ pipeline {
|
|||||||
}
|
}
|
||||||
stage('archiveArtifacts') {
|
stage('archiveArtifacts') {
|
||||||
steps{
|
steps{
|
||||||
archiveArtifacts 'model1.h5'
|
archiveArtifacts 'vgsales_model.h5'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
66
train.py
66
train.py
@ -1,42 +1,48 @@
|
|||||||
#! /usr/bin/python3
|
import sys
|
||||||
from tensorflow.keras.models import Sequential, load_model
|
|
||||||
from tensorflow.keras.layers import Dense
|
|
||||||
from sklearn.metrics import accuracy_score, classification_report
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import requests
|
from sklearn import preprocessing
|
||||||
url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv'
|
from sklearn.linear_model import LinearRegression
|
||||||
r = requests.get(url, allow_redirects=True)
|
from sklearn.metrics import mean_squared_error
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
|
||||||
open('vgsales.csv', 'wb').write(r.content)
|
# odczytanie danych z plików
|
||||||
df = pd.read_csv('vgsales.csv')
|
vgsales_train = pd.read_csv('train.csv')
|
||||||
|
vgsales_test = pd.read_csv('test.csv')
|
||||||
|
vgsales_dev = pd.read_csv('dev.csv')
|
||||||
|
|
||||||
|
vgsales_train['Nintendo'] = vgsales_train['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
vgsales_test['Nintendo'] = vgsales_test['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
vgsales_dev['Nintendo'] = vgsales_dev['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
|
||||||
|
# podzial na X i y
|
||||||
|
X_train = vgsales_train.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||||
|
y_train = vgsales_train[['Nintendo']]
|
||||||
|
X_test = vgsales_test.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||||
|
y_test = vgsales_test[['Nintendo']]
|
||||||
|
|
||||||
def regression_model():
|
print(X_train.shape[1])
|
||||||
|
# keras model
|
||||||
model = Sequential()
|
model = Sequential()
|
||||||
model.add(Dense(16,activation = "relu", input_shape = (x_train.shape[1],)))
|
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||||
model.add(Dense(32,activation = "relu"))
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||||
model.add(Dense(1,activation = "relu"))
|
|
||||||
|
|
||||||
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||||
return model
|
|
||||||
|
|
||||||
df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
# kompilacja
|
||||||
df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||||
df
|
|
||||||
|
|
||||||
y = df.Nintendo
|
# model fit
|
||||||
|
epochs = int(sys.argv[1])
|
||||||
|
batch_size = int(sys.argv[2])
|
||||||
|
|
||||||
df=((df-df.min())/(df.max()-df.min()))
|
# trenowanie modelu
|
||||||
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||||
|
|
||||||
x = df.drop(['Nintendo'],axis = 1)
|
# zapisanie modelu
|
||||||
|
model.save('vgsales_model.h5')
|
||||||
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
|
|
||||||
|
|
||||||
model = regression_model()
|
|
||||||
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
|
||||||
|
|
||||||
y_pred = model.predict(x_test)
|
|
||||||
model.save('model1.h5')
|
|
||||||
|
48
train2.py
Normal file
48
train2.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
import sys
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from sklearn import preprocessing
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
|
||||||
|
# odczytanie danych z plików
|
||||||
|
vgsales_train = pd.read_csv('train.csv')
|
||||||
|
vgsales_test = pd.read_csv('test.csv')
|
||||||
|
vgsales_dev = pd.read_csv('dev.csv')
|
||||||
|
|
||||||
|
vgsales_train['Nintendo'] = vgsales_train['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
vgsales_test['Nintendo'] = vgsales_test['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
vgsales_dev['Nintendo'] = vgsales_dev['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
|
||||||
|
# podzial na X i y
|
||||||
|
X_train = vgsales_train.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||||
|
y_train = vgsales_train[['Nintendo']]
|
||||||
|
X_test = vgsales_test.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||||
|
y_test = vgsales_test[['Nintendo']]
|
||||||
|
|
||||||
|
print(X_train.shape[1])
|
||||||
|
# keras model
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||||
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||||
|
|
||||||
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||||
|
|
||||||
|
# kompilacja
|
||||||
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||||
|
|
||||||
|
# model fit
|
||||||
|
epochs = int(sys.argv[1])
|
||||||
|
batch_size = int(sys.argv[2])
|
||||||
|
|
||||||
|
# trenowanie modelu
|
||||||
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||||
|
|
||||||
|
# zapisanie modelu
|
||||||
|
model.save('vgsales_model.h5')
|
Loading…
Reference in New Issue
Block a user