training changes
This commit is contained in:
parent
2d0e53d1eb
commit
18172eadf9
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -29,7 +29,7 @@ pipeline {
|
||||
}
|
||||
stage('archiveArtifacts') {
|
||||
steps{
|
||||
archiveArtifacts 'model1.h5'
|
||||
archiveArtifacts 'vgsales_model.h5'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
68
train.py
68
train.py
@ -1,42 +1,48 @@
|
||||
#! /usr/bin/python3
|
||||
from tensorflow.keras.models import Sequential, load_model
|
||||
from tensorflow.keras.layers import Dense
|
||||
from sklearn.metrics import accuracy_score, classification_report
|
||||
import sys
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
import numpy as np
|
||||
import requests
|
||||
url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv'
|
||||
r = requests.get(url, allow_redirects=True)
|
||||
from sklearn import preprocessing
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from tensorflow.keras.models import Sequential
|
||||
|
||||
open('vgsales.csv', 'wb').write(r.content)
|
||||
df = pd.read_csv('vgsales.csv')
|
||||
# odczytanie danych z plików
|
||||
vgsales_train = pd.read_csv('train.csv')
|
||||
vgsales_test = pd.read_csv('test.csv')
|
||||
vgsales_dev = pd.read_csv('dev.csv')
|
||||
|
||||
vgsales_train['Nintendo'] = vgsales_train['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
vgsales_test['Nintendo'] = vgsales_test['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
vgsales_dev['Nintendo'] = vgsales_dev['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
|
||||
# podzial na X i y
|
||||
X_train = vgsales_train.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
y_train = vgsales_train[['Nintendo']]
|
||||
X_test = vgsales_test.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
y_test = vgsales_test[['Nintendo']]
|
||||
|
||||
def regression_model():
|
||||
model = Sequential()
|
||||
model.add(Dense(16,activation = "relu", input_shape = (x_train.shape[1],)))
|
||||
model.add(Dense(32,activation = "relu"))
|
||||
model.add(Dense(1,activation = "relu"))
|
||||
print(X_train.shape[1])
|
||||
# keras model
|
||||
model = Sequential()
|
||||
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||
|
||||
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
||||
return model
|
||||
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||
|
||||
df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
df
|
||||
# kompilacja
|
||||
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
y = df.Nintendo
|
||||
# model fit
|
||||
epochs = int(sys.argv[1])
|
||||
batch_size = int(sys.argv[2])
|
||||
|
||||
df=((df-df.min())/(df.max()-df.min()))
|
||||
# trenowanie modelu
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||
|
||||
x = df.drop(['Nintendo'],axis = 1)
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
|
||||
|
||||
model = regression_model()
|
||||
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
||||
|
||||
y_pred = model.predict(x_test)
|
||||
model.save('model1.h5')
|
||||
# zapisanie modelu
|
||||
model.save('vgsales_model.h5')
|
||||
|
48
train2.py
Normal file
48
train2.py
Normal file
@ -0,0 +1,48 @@
|
||||
import sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn import preprocessing
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from tensorflow.keras.models import Sequential
|
||||
|
||||
# odczytanie danych z plików
|
||||
vgsales_train = pd.read_csv('train.csv')
|
||||
vgsales_test = pd.read_csv('test.csv')
|
||||
vgsales_dev = pd.read_csv('dev.csv')
|
||||
|
||||
vgsales_train['Nintendo'] = vgsales_train['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
vgsales_test['Nintendo'] = vgsales_test['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
vgsales_dev['Nintendo'] = vgsales_dev['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
|
||||
# podzial na X i y
|
||||
X_train = vgsales_train.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
y_train = vgsales_train[['Nintendo']]
|
||||
X_test = vgsales_test.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
y_test = vgsales_test[['Nintendo']]
|
||||
|
||||
print(X_train.shape[1])
|
||||
# keras model
|
||||
model = Sequential()
|
||||
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||
|
||||
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||
|
||||
# kompilacja
|
||||
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
# model fit
|
||||
epochs = int(sys.argv[1])
|
||||
batch_size = int(sys.argv[2])
|
||||
|
||||
# trenowanie modelu
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||
|
||||
# zapisanie modelu
|
||||
model.save('vgsales_model.h5')
|
Loading…
Reference in New Issue
Block a user