zadanie 5
This commit is contained in:
parent
a4ac127976
commit
31dfaf28c8
@ -7,13 +7,17 @@ RUN apt install -y git
|
||||
RUN apt install -y python3-pip
|
||||
RUN pip3 install --user kaggle
|
||||
RUN pip3 install --user pandas
|
||||
RUN pip3 install --user numpy
|
||||
RUN pip3 install --user seaborn
|
||||
RUN pip3 install --user sklearn
|
||||
RUN pip3 install --user matplotlib
|
||||
RUN pip3 install --user tensorflow
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY ./skrypt.sh ./
|
||||
COPY ./zadanie2.py ./
|
||||
COPY ./zadanie5.py ./
|
||||
|
||||
CMD ./zadanie2.py
|
||||
CMD ./zadanie2.py
|
||||
CMD ./zadanie5.py
|
||||
|
4
dataset_stats/Jenkinsfile
vendored
4
dataset_stats/Jenkinsfile
vendored
@ -1,6 +1,6 @@
|
||||
pipeline {
|
||||
agent {
|
||||
docker { image 'shroomy/ium:1' }
|
||||
docker { image 'shroomy/ium:2' }
|
||||
}
|
||||
parameters {
|
||||
buildSelector(defaultSelector:
|
||||
@ -31,4 +31,4 @@ pipeline {
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
51
zadanie5.py
Executable file
51
zadanie5.py
Executable file
@ -0,0 +1,51 @@
|
||||
#! /usr/bin/python3
|
||||
from tensorflow.keras.models import Sequential, load_model
|
||||
from tensorflow.keras.layers import Dense
|
||||
from sklearn.metrics import accuracy_score, classification_report
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
import numpy as np
|
||||
import requests
|
||||
url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv'
|
||||
r = requests.get(url, allow_redirects=True)
|
||||
|
||||
open('vgsales.csv', 'wb').write(r.content)
|
||||
df = pd.read_csv('vgsales.csv')
|
||||
|
||||
|
||||
|
||||
def regression_model():
|
||||
model = Sequential()
|
||||
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
|
||||
model.add(Dense(64,activation = "relu"))
|
||||
model.add(Dense(1,activation = "relu"))
|
||||
|
||||
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
||||
return model
|
||||
|
||||
df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||
df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
||||
df
|
||||
|
||||
y = df.Nintendo
|
||||
|
||||
df=((df-df.min())/(df.max()-df.min()))
|
||||
|
||||
x = df.drop(['Nintendo'],axis = 1)
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
|
||||
|
||||
model = regression_model()
|
||||
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
||||
|
||||
y_pred = model.predict(x_test)
|
||||
|
||||
y_pred[:5]
|
||||
|
||||
y_pred = np.around(y_pred, decimals=0)
|
||||
|
||||
y_pred[:5]
|
||||
|
||||
print(accuracy_score(y_test, y_pred))
|
||||
|
||||
print(classification_report(y_test,y_pred))
|
Loading…
Reference in New Issue
Block a user