zadanie 5

This commit is contained in:
s434695 2021-04-25 23:24:46 +02:00
parent a4ac127976
commit 31dfaf28c8
3 changed files with 58 additions and 3 deletions

View File

@ -7,13 +7,17 @@ RUN apt install -y git
RUN apt install -y python3-pip
RUN pip3 install --user kaggle
RUN pip3 install --user pandas
RUN pip3 install --user numpy
RUN pip3 install --user seaborn
RUN pip3 install --user sklearn
RUN pip3 install --user matplotlib
RUN pip3 install --user tensorflow
WORKDIR /app
COPY ./skrypt.sh ./
COPY ./zadanie2.py ./
COPY ./zadanie5.py ./
CMD ./zadanie2.py
CMD ./zadanie5.py

View File

@ -1,6 +1,6 @@
pipeline {
agent {
docker { image 'shroomy/ium:1' }
docker { image 'shroomy/ium:2' }
}
parameters {
buildSelector(defaultSelector:

51
zadanie5.py Executable file
View File

@ -0,0 +1,51 @@
#! /usr/bin/python3
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import requests
url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv'
r = requests.get(url, allow_redirects=True)
open('vgsales.csv', 'wb').write(r.content)
df = pd.read_csv('vgsales.csv')
def regression_model():
model = Sequential()
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
df
y = df.Nintendo
df=((df-df.min())/(df.max()-df.min()))
x = df.drop(['Nintendo'],axis = 1)
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
y_pred = model.predict(x_test)
y_pred[:5]
y_pred = np.around(y_pred, decimals=0)
y_pred[:5]
print(accuracy_score(y_test, y_pred))
print(classification_report(y_test,y_pred))