m
This commit is contained in:
parent
0af85c753a
commit
9477485803
11
MLproject
Normal file
11
MLproject
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
name: 434695-mlflow
|
||||||
|
|
||||||
|
docker_env:
|
||||||
|
image: shroomy/ium:1
|
||||||
|
|
||||||
|
entry_points:
|
||||||
|
main:
|
||||||
|
parameters:
|
||||||
|
epochs: {type: int, default: 15}
|
||||||
|
batch_size: {type: int, default: 16}
|
||||||
|
command: "python3 vgsales-mlflow.py {epochs} {batch_size}"
|
@ -5,27 +5,19 @@ FROM ubuntu:latest
|
|||||||
RUN apt update && apt install -y figlet
|
RUN apt update && apt install -y figlet
|
||||||
RUN apt install -y git
|
RUN apt install -y git
|
||||||
RUN apt install -y python3-pip
|
RUN apt install -y python3-pip
|
||||||
RUN pip3 install --user setuptools
|
RUN pip3 install setuptools
|
||||||
RUN pip3 install --user kaggle
|
RUN pip3 install kaggle
|
||||||
RUN pip3 install --user pandas
|
RUN pip3 install pandas
|
||||||
RUN pip3 install --user numpy
|
RUN pip3 install numpy
|
||||||
RUN pip3 install --user seaborn
|
RUN pip3 install seaborn
|
||||||
RUN pip3 install --user sklearn
|
RUN pip3 install sklearn
|
||||||
RUN pip3 install --user matplotlib
|
RUN pip3 install matplotlib
|
||||||
RUN pip3 install --user tensorflow
|
RUN pip3 install tensorflow
|
||||||
RUN pip3 install --user sacred
|
RUN pip3 install sacred
|
||||||
RUN pip3 install --user wget
|
RUN pip3 install wget
|
||||||
RUN pip3 install --user keras
|
RUN pip3 install keras
|
||||||
RUN pip3 install --user GitPython
|
RUN pip3 install GitPython
|
||||||
RUN pip3 install --user pymongo
|
RUN pip3 install pymongo
|
||||||
|
RUN pip3 install mlflow
|
||||||
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY ./train.py ./
|
|
||||||
COPY ./evaluate.py ./
|
|
||||||
COPY ./sacred1.py ./
|
|
||||||
COPY ./sacred2.py ./
|
|
||||||
COPY ./skrypt.sh ./
|
|
||||||
COPY ./zadanie2.py ./
|
|
||||||
COPY ./zadanie5.py ./
|
|
67
vgsales-mlflow.py
Normal file
67
vgsales-mlflow.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
import sys
|
||||||
|
from keras.backend import batch_dot, mean
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from six import int2byte
|
||||||
|
from sklearn import preprocessing
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
import mlflow
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def my_main(epochs, batch_size):
|
||||||
|
|
||||||
|
vgsales=pd.read_csv('vgsales.csv')
|
||||||
|
|
||||||
|
vgsales['Nintendo'] = vgsales['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
||||||
|
|
||||||
|
Y = vgsales['Nintendo']
|
||||||
|
X = vgsales.drop(['Rank','Name','Platform','Year','Genre','Publisher','Nintendo'],axis = 1)
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X,Y , test_size=0.2,train_size=0.8, random_state=21)
|
||||||
|
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(9, input_dim = X_train, kernel_initializer='normal', activation='relu'))
|
||||||
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||||
|
|
||||||
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||||
|
|
||||||
|
|
||||||
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||||
|
|
||||||
|
|
||||||
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||||
|
|
||||||
|
|
||||||
|
prediction = model.predict(X_test)
|
||||||
|
|
||||||
|
|
||||||
|
rmse = mean_squared_error(y_test, prediction)
|
||||||
|
|
||||||
|
|
||||||
|
model.save('vgsales_model.h5')
|
||||||
|
|
||||||
|
return rmse, model
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 15
|
||||||
|
batch_size = int(sys.argv[2]) if len(sys.argv) > 2 else 16
|
||||||
|
|
||||||
|
|
||||||
|
with mlflow.start_run():
|
||||||
|
|
||||||
|
rmse, model = my_main(epochs, batch_size)
|
||||||
|
|
||||||
|
mlflow.log_param("epochs", epochs)
|
||||||
|
mlflow.log_param("batch_size", batch_size)
|
||||||
|
mlflow.log_metric("rmse", rmse)
|
||||||
|
mlflow.keras.log_model(model, 'vgsales_model.h5')
|
Loading…
Reference in New Issue
Block a user