#! /usr/bin/python3 from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.layers import Dense from sklearn.metrics import accuracy_score, classification_report import pandas as pd from sklearn.model_selection import train_test_split import wget import numpy as np import requests from sacred.observers import FileStorageObserver from sacred import Experiment from datetime import datetime import os from sacred.observers import MongoObserver ex = Experiment("ium_s434695", interactive=False) ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred')) @ex.config def my_config(): train_size_param = 0.8 test_size_param = 0.2 @ex.capture def prepare_model(train_size_param, test_size_param, _run): _run.info["prepare_model_ts"] = str(datetime.now()) url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv' r = requests.get(url, allow_redirects=True) open('vgsales.csv', 'wb').write(r.content) df = pd.read_csv('vgsales.csv') def regression_model(): model = Sequential() model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],))) model.add(Dense(64,activation = "relu")) model.add(Dense(1,activation = "relu")) model.compile(optimizer = "adam", loss = "mean_squared_error") return model df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0) df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1) df y = df.Nintendo df=((df-df.min())/(df.max()-df.min())) x = df.drop(['Nintendo'],axis = 1) x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21) model = regression_model() model.fit(x_train, y_train, epochs = 600, verbose = 1) y_pred = model.predict(x_test) y_pred[:5] y_pred = np.around(y_pred, decimals=0) y_pred[:5] return(classification_report(y_test,y_pred)) @ex.main def my_main(train_size_param, test_size_param): print(prepare_model()) r = ex.run() ex.add_artifact("vgsales_model/saved_model/saved_model.pb")