54 lines
1.5 KiB
Python
Executable File
54 lines
1.5 KiB
Python
Executable File
#! /usr/bin/python3
|
|
from tensorflow.keras.models import Sequential, load_model
|
|
from tensorflow.keras.layers import Dense
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
import numpy as np
|
|
import requests
|
|
url = 'https://git.wmi.amu.edu.pl/s434695/ium_434695/raw/commit/2301fb86e434734376f73503307a8f3255a75cc6/vgsales.csv'
|
|
r = requests.get(url, allow_redirects=True)
|
|
|
|
open('vgsales.csv', 'wb').write(r.content)
|
|
df = pd.read_csv('vgsales.csv')
|
|
|
|
|
|
|
|
def regression_model():
|
|
model = Sequential()
|
|
model.add(Dense(16,activation = "relu", input_shape = (x_train.shape[1],)))
|
|
model.add(Dense(32,activation = "relu"))
|
|
model.add(Dense(1,activation = "relu"))
|
|
|
|
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
|
return model
|
|
|
|
df['Nintendo'] = df['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
|
df = df.drop(['Rank','Name','Platform','Year','Genre','Publisher'],axis = 1)
|
|
df
|
|
|
|
y = df.Nintendo
|
|
|
|
df=((df-df.min())/(df.max()-df.min()))
|
|
|
|
x = df.drop(['Nintendo'],axis = 1)
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
|
|
|
|
model = regression_model()
|
|
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
|
|
|
y_pred = model.predict(x_test)
|
|
|
|
y_pred[:5]
|
|
|
|
y_pred = np.around(y_pred, decimals=0)
|
|
|
|
y_pred[:5]
|
|
|
|
print(accuracy_score(y_test, y_pred))
|
|
|
|
print(classification_report(y_test,y_pred))
|
|
|
|
pd.DataFrame(y_pred).to_csv("preds.csv")
|