67 lines
1.9 KiB
Python
67 lines
1.9 KiB
Python
import sys
|
|
from keras.backend import batch_dot, mean
|
|
import pandas as pd
|
|
import numpy as np
|
|
from six import int2byte
|
|
from sklearn import preprocessing
|
|
from sklearn.linear_model import LinearRegression
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import train_test_split
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
|
from tensorflow.keras.models import Model
|
|
from tensorflow.keras.callbacks import EarlyStopping
|
|
from tensorflow.keras.models import Sequential
|
|
import mlflow
|
|
|
|
|
|
|
|
def my_main(epochs, batch_size):
|
|
|
|
vgsales=pd.read_csv('vgsales.csv')
|
|
|
|
vgsales['Nintendo'] = vgsales['Publisher'].apply(lambda x: 1 if x=='Nintendo' else 0)
|
|
|
|
Y = vgsales['Nintendo']
|
|
X = vgsales.drop(['Rank','Name','Platform','Year','Genre','Publisher','Nintendo'],axis = 1)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X,Y , test_size=0.2,train_size=0.8, random_state=21)
|
|
|
|
model = Sequential()
|
|
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
|
|
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
|
|
|
|
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
|
|
|
|
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
|
|
|
|
|
prediction = model.predict(X_test)
|
|
|
|
|
|
rmse = mean_squared_error(y_test, prediction)
|
|
|
|
|
|
model.save('vgsales_model.h5')
|
|
|
|
return rmse, model
|
|
|
|
|
|
|
|
epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 15
|
|
batch_size = int(sys.argv[2]) if len(sys.argv) > 2 else 16
|
|
|
|
|
|
with mlflow.start_run():
|
|
|
|
rmse, model = my_main(epochs, batch_size)
|
|
|
|
mlflow.log_param("epochs", epochs)
|
|
mlflow.log_param("batch_size", batch_size)
|
|
mlflow.log_metric("rmse", rmse)
|
|
mlflow.keras.log_model(model, 'vgsales_model.h5') |