Bayes 2
This commit is contained in:
parent
756ef4277a
commit
f02d3abb2f
110
.ipynb_checkpoints/Bayes-checkpoint.ipynb
Normal file
110
.ipynb_checkpoints/Bayes-checkpoint.ipynb
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from sklearn.preprocessing import LabelEncoder\n",
|
||||||
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||||
|
"from sklearn.pipeline import make_pipeline\n",
|
||||||
|
"from sklearn.feature_extraction.text import TfidfVectorizer"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"train/in.tsv\") as f:\n",
|
||||||
|
" x_train = f.readlines()\n",
|
||||||
|
"\n",
|
||||||
|
"with open(\"train/expected.tsv\") as f:\n",
|
||||||
|
" y_train = f.readlines()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([1, 0, 0, ..., 0, 0, 1])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"y_train = LabelEncoder().fit_transform(y_train)\n",
|
||||||
|
"y_train"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"model = pipeline.fit(x_train, y_train)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"dev-0/in.tsv\") as f:\n",
|
||||||
|
" x_dev = f.readlines()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 24,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"prediction = model.predict(x_dev)\n",
|
||||||
|
"np.savetxt(\"dev-0/out.tsv\", prediction, fmt='%d')"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
130
Bayes.ipynb
Normal file
130
Bayes.ipynb
Normal file
@ -0,0 +1,130 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from sklearn.preprocessing import LabelEncoder\n",
|
||||||
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||||
|
"from sklearn.pipeline import make_pipeline\n",
|
||||||
|
"from sklearn.feature_extraction.text import TfidfVectorizer"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"train/in.tsv\") as f:\n",
|
||||||
|
" x_train = f.readlines()\n",
|
||||||
|
"\n",
|
||||||
|
"with open(\"train/expected.tsv\") as f:\n",
|
||||||
|
" y_train = f.readlines()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([1, 0, 0, ..., 0, 0, 1])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"y_train = LabelEncoder().fit_transform(y_train)\n",
|
||||||
|
"y_train"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"model = pipeline.fit(x_train, y_train)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"dev-0/in.tsv\") as f:\n",
|
||||||
|
" x_dev = f.readlines()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 25,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"prediction = model.predict(x_dev)\n",
|
||||||
|
"np.savetxt(\"dev-0/out.tsv\", prediction, fmt='%d')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"test-A/in.tsv\") as f:\n",
|
||||||
|
" x_test = f.readlines()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 27,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"prediction = model.predict(x_test)\n",
|
||||||
|
"np.savetxt(\"test-A/out.tsv\", prediction, fmt='%d')"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
5272
dev-0/in.tsv
Normal file
5272
dev-0/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
dev-0/in.tsv.xz
BIN
dev-0/in.tsv.xz
Binary file not shown.
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
29
program.py
Executable file
29
program.py
Executable file
@ -0,0 +1,29 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.pipeline import make_pipeline
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
|
||||||
|
with open("train/in.tsv") as f:
|
||||||
|
x_train = f.readlines()
|
||||||
|
|
||||||
|
with open("train/expected.tsv") as f:
|
||||||
|
y_train = f.readlines()
|
||||||
|
|
||||||
|
y_train = LabelEncoder().fit_transform(y_train)
|
||||||
|
|
||||||
|
pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())
|
||||||
|
|
||||||
|
model = pipeline.fit(x_train, y_train)
|
||||||
|
|
||||||
|
with open("dev-0/in.tsv") as f:
|
||||||
|
x_dev = f.readlines()
|
||||||
|
|
||||||
|
prediction = model.predict(x_dev)
|
||||||
|
np.savetxt("dev-0/out.tsv", prediction, fmt='%d')
|
||||||
|
|
||||||
|
with open("test-A/in.tsv") as f:
|
||||||
|
x_test = f.readlines()
|
||||||
|
|
||||||
|
prediction = model.predict(x_test)
|
||||||
|
np.savetxt("test-A/out.tsv", prediction, fmt='%d')
|
5152
test-A/in.tsv
Normal file
5152
test-A/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
test-A/in.tsv.xz
BIN
test-A/in.tsv.xz
Binary file not shown.
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/in.tsv
Normal file
289579
train/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
train/in.tsv.xz
BIN
train/in.tsv.xz
Binary file not shown.
6
wyniki.txt
Normal file
6
wyniki.txt
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
Likelihood 0.0000
|
||||||
|
Accuracy 0.7367
|
||||||
|
F1.0 0.4367
|
||||||
|
Precision 0.8997
|
||||||
|
Recall 0.2883
|
||||||
|
|
Loading…
Reference in New Issue
Block a user