{ "cells": [ { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.preprocessing import LabelEncoder\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.feature_extraction.text import TfidfVectorizer" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "with open(\"train/in.tsv\") as f:\n", " x_train = f.readlines()\n", "\n", "with open(\"train/expected.tsv\") as f:\n", " y_train = f.readlines()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 0, 0, ..., 0, 0, 1])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_train = LabelEncoder().fit_transform(y_train)\n", "y_train" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "model = pipeline.fit(x_train, y_train)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "with open(\"dev-0/in.tsv\") as f:\n", " x_dev = f.readlines()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "prediction = model.predict(x_dev)\n", "np.savetxt(\"dev-0/out.tsv\", prediction, fmt='%d')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "with open(\"test-A/in.tsv\") as f:\n", " x_test = f.readlines()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "prediction = model.predict(x_test)\n", "np.savetxt(\"test-A/out.tsv\", prediction, fmt='%d')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }