ium_s434700/learning/ml-mlflow.py

90 lines
2.6 KiB
Python
Raw Normal View History

2021-06-04 15:58:29 +02:00
import torch
import mlflow
from urllib.parse import urlparse
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import datetime
from torch.autograd import Variable
INPUT_DIM = 1
OUTPUT_DIM = 1
LEARNING_RATE = 0.01
EPOCHS = 100
mlflow.set_tracking_uri("http://172.17.0.1:5000")
dataset = pd.read_csv('datasets/train_set.csv')
testset = pd.read_csv('datasets/test_set.csv')
x_values = [datetime.datetime.strptime(
item, "%Y-%m-%d").month for item in dataset['date'].values]
x_train = np.array(x_values, dtype=np.float32)
x_train = x_train.reshape(-1, 1)
y_values = [min(dataset['result_1'].values[i]/dataset['result_2'].values[i], dataset['result_2'].values[i] /
dataset['result_1'].values[i]) for i in range(len(dataset['result_1'].values))]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1, 1)
class LinearRegression(torch.nn.Module):
def __init__(self, inputSize, outputSize):
super(LinearRegression, self).__init__()
self.linear = torch.nn.Linear(inputSize, outputSize)
def forward(self, x):
out = self.linear(x)
return out
model = LinearRegression(INPUT_DIM, OUTPUT_DIM)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)
for epoch in range(EPOCHS):
inputs = Variable(torch.from_numpy(x_train))
labels = Variable(torch.from_numpy(y_train))
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
print(loss)
loss.backward()
optimizer.step()
print('epoch {}, loss {}'.format(epoch, loss.item()))
torch.save(model.state_dict(), 'model.pt')
with mlflow.start_run():
test_input = x_train[0]
mlflow.log_param("train size", dataset.size)
mlflow.log_param("test size", testset.size)
mlflow.log_param("epochs", EPOCHS)
2021-06-04 16:07:32 +02:00
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
2021-06-04 15:58:29 +02:00
signature = mlflow.models.signature.infer_signature(
2021-06-04 16:08:46 +02:00
x_train, predicted)
2021-06-04 15:58:29 +02:00
mlflow.set_experiment("s434700")
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
if tracking_url_type_store != "file":
mlflow.keras.log_model(model, "model.pt", registered_model_name="s434700", signature=signature,
input_example=test_input)
else:
mlflow.keras.log_model(model, "model.pt",
signature=signature, input_example=test_input)
mlflow.keras.save_model(
model, "model.pt", signature=signature, input_example=test_input)