2021-06-08 18:32:35 +02:00
|
|
|
import json
|
|
|
|
import mlflow
|
|
|
|
import pandas as pd
|
|
|
|
from pprint import pprint
|
|
|
|
from mlflow.tracking import MlflowClient
|
|
|
|
|
|
|
|
model_name = "s430705"
|
|
|
|
model_version = 50
|
|
|
|
|
|
|
|
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
|
|
|
|
|
|
|
model = mlflow.keras.pyfunc.load_model(
|
|
|
|
model_uri=f"models:/{model_name}/{model_version}",
|
|
|
|
)
|
2021-06-10 14:45:52 +02:00
|
|
|
|
|
|
|
client = MlflowClient()
|
2021-06-10 14:58:09 +02:00
|
|
|
|
|
|
|
with open(client.get_model_version(model_name, model_version).source + '/input_example.json', 'r') as input_file:
|
|
|
|
data = json.load(input_file)
|
|
|
|
example_input = data["inputs"]
|
|
|
|
|
|
|
|
input_dictionary = {i: x for i, x in enumerate(example_input)}
|
|
|
|
input_ex = pd.DataFrame(input_dictionary, index=[0])
|
2021-06-10 14:59:48 +02:00
|
|
|
print("RESULT: ", model.predict(input_ex))
|