mlflow test
This commit is contained in:
parent
c7c26838a9
commit
8a900b0cbd
2
learning/Jenkinsfile
vendored
2
learning/Jenkinsfile
vendored
@ -21,6 +21,8 @@ pipeline {
|
||||
stage('learning') {
|
||||
steps {
|
||||
sh 'python ./learning/ml.py'
|
||||
sh "export MLFLOW_TRACKING_URI=http://172.17.0.1:5000"
|
||||
sh "python ./learning/ml-mlflow.py"
|
||||
}
|
||||
}
|
||||
stage('archiveArtifacts') {
|
||||
|
87
learning/ml-mlflow.py
Normal file
87
learning/ml-mlflow.py
Normal file
@ -0,0 +1,87 @@
|
||||
import torch
|
||||
import mlflow
|
||||
from urllib.parse import urlparse
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
import datetime
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
INPUT_DIM = 1
|
||||
OUTPUT_DIM = 1
|
||||
LEARNING_RATE = 0.01
|
||||
EPOCHS = 100
|
||||
|
||||
|
||||
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
||||
dataset = pd.read_csv('datasets/train_set.csv')
|
||||
testset = pd.read_csv('datasets/test_set.csv')
|
||||
|
||||
x_values = [datetime.datetime.strptime(
|
||||
item, "%Y-%m-%d").month for item in dataset['date'].values]
|
||||
x_train = np.array(x_values, dtype=np.float32)
|
||||
x_train = x_train.reshape(-1, 1)
|
||||
|
||||
y_values = [min(dataset['result_1'].values[i]/dataset['result_2'].values[i], dataset['result_2'].values[i] /
|
||||
dataset['result_1'].values[i]) for i in range(len(dataset['result_1'].values))]
|
||||
y_train = np.array(y_values, dtype=np.float32)
|
||||
y_train = y_train.reshape(-1, 1)
|
||||
|
||||
|
||||
class LinearRegression(torch.nn.Module):
|
||||
def __init__(self, inputSize, outputSize):
|
||||
super(LinearRegression, self).__init__()
|
||||
self.linear = torch.nn.Linear(inputSize, outputSize)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return out
|
||||
|
||||
|
||||
model = LinearRegression(INPUT_DIM, OUTPUT_DIM)
|
||||
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
for epoch in range(EPOCHS):
|
||||
inputs = Variable(torch.from_numpy(x_train))
|
||||
labels = Variable(torch.from_numpy(y_train))
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = model(inputs)
|
||||
|
||||
loss = criterion(outputs, labels)
|
||||
print(loss)
|
||||
loss.backward()
|
||||
|
||||
optimizer.step()
|
||||
|
||||
print('epoch {}, loss {}'.format(epoch, loss.item()))
|
||||
|
||||
torch.save(model.state_dict(), 'model.pt')
|
||||
|
||||
with mlflow.start_run():
|
||||
test_input = x_train[0]
|
||||
|
||||
mlflow.log_param("train size", dataset.size)
|
||||
mlflow.log_param("test size", testset.size)
|
||||
mlflow.log_param("epochs", EPOCHS)
|
||||
|
||||
signature = mlflow.models.signature.infer_signature(
|
||||
x_train.values, model.predict(x_train.values))
|
||||
|
||||
mlflow.set_experiment("s434700")
|
||||
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
||||
if tracking_url_type_store != "file":
|
||||
mlflow.keras.log_model(model, "model.pt", registered_model_name="s434700", signature=signature,
|
||||
input_example=test_input)
|
||||
else:
|
||||
mlflow.keras.log_model(model, "model.pt",
|
||||
signature=signature, input_example=test_input)
|
||||
mlflow.keras.save_model(
|
||||
model, "model.pt", signature=signature, input_example=test_input)
|
@ -3,7 +3,6 @@ import torch.nn as nn
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import torch
|
||||
import datetime
|
||||
from torch.autograd import Variable
|
||||
|
@ -6,3 +6,4 @@ matplotlib
|
||||
seaborn
|
||||
sacred
|
||||
pymongo
|
||||
mlflow
|
Loading…
Reference in New Issue
Block a user