scared first attempt

This commit is contained in:
Filip Izydorczyk 2021-06-02 17:32:20 +02:00
parent 3f0f274eb3
commit dc82d390f1
4 changed files with 96 additions and 1 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
sacred_runs

View File

@ -27,6 +27,7 @@ pipeline {
steps { steps {
sh 'python ./evaluation/eval.py' sh 'python ./evaluation/eval.py'
sh 'python ./evaluation/plot.py' sh 'python ./evaluation/plot.py'
sh 'python ./evaluation/scared-fileobserver.py'
} }
} }
stage('archiveArtifacts') { stage('archiveArtifacts') {

View File

@ -0,0 +1,92 @@
import datetime
import pandas as pd
import numpy as np
from torch.autograd import Variable
import torch
import torch.nn as nn
from sacred import Experiment
from sacred.observers import FileStorageObserver
import csv
ex = Experiment("434700-file", interactive=False, save_git_info=False)
ex.observers.append(FileStorageObserver('sacred_runs/my_runs'))
@ex.config
def my_config():
epochs = 10
batch_size = 16
@ex.capture
def prepare_model(epochs, batch_size, _run):
INPUT_DIM = 1
OUTPUT_DIM = 1
LEARNING_RATE = 0.01
EPOCHS = epochs
dataset = pd.read_csv('datasets/train_set.csv')
x_values = [datetime.datetime.strptime(
item, "%Y-%m-%d").month for item in dataset['date'].values]
x_train = np.array(x_values, dtype=np.float32)
x_train = x_train.reshape(-1, 1)
y_values = [min(dataset['result_1'].values[i]/dataset['result_2'].values[i], dataset['result_2'].values[i] /
dataset['result_1'].values[i]) for i in range(len(dataset['result_1'].values))]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1, 1)
class LinearRegression(torch.nn.Module):
def __init__(self, inputSize, outputSize):
super(LinearRegression, self).__init__()
self.linear = torch.nn.Linear(inputSize, outputSize)
def forward(self, x):
out = self.linear(x)
return out
model = LinearRegression(INPUT_DIM, OUTPUT_DIM)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)
for epoch in range(EPOCHS):
inputs = Variable(torch.from_numpy(x_train))
labels = Variable(torch.from_numpy(y_train))
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
print(loss)
loss.backward()
optimizer.step()
print('epoch {}, loss {}'.format(epoch, loss.item()))
torch.save(model.state_dict(), 'model-experiment.pt')
with torch.no_grad(): # we don't need gradients in the testing phase
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
with open('model_experiment_results.csv', mode='w') as filee:
writer = csv.writer(filee, delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)
writer.writerow(['x', 'y', 'predicted_y'])
for i in range(len(x_train)):
writer.writerow([x_train[i][0], y_train[i][0], predicted[i][0]])
@ex.automain
def my_main(epochs, batch_size):
print(prepare_model())
ex.run()
ex.add_artifact('model-experiment.pt')
ex.add_artifact('model_experiment_results.csv')

View File

@ -3,4 +3,5 @@ pandas
torch torch
numpy numpy
matplotlib matplotlib
seaborn seaborn
sacred