Neural bigrams

This commit is contained in:
Wojciech Jarmosz 2022-05-01 23:58:10 +02:00
parent a0c4ca1217
commit 37775b359b
3 changed files with 18139 additions and 18003 deletions

File diff suppressed because it is too large Load Diff

276
run.py
View File

@ -1,76 +1,212 @@
# -*- coding: utf-8 -*-
"""Untitled12.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ia944iiX5i5KOxESwbcHksNJrG4L12U6
"""
!pip install torch regexp pandas
!git clone --single-branch git://gonito.net/challenging-america-word-gap-prediction -b master
!xzcat ./challenging-america-word-gap-prediction/train/in.tsv.xz > ./challenging-america-word-gap-prediction/train/in.tsv
!xzcat ./challenging-america-word-gap-prediction/dev-0/in.tsv.xz > ./challenging-america-word-gap-prediction/dev-0/in.tsv
!xzcat ./challenging-america-word-gap-prediction/test-A/in.tsv.xz > ./challenging-america-word-gap-prediction/test-A/in.tsv
import pandas as pd
import csv
def read_train_data(file):
data = pd.read_csv(file, sep="\t", error_bad_lines=False, index_col=0, header=None)
with open('input_train.txt', 'w') as f:
for index, row in data[:500000].iterrows():
first_part = str(row[6]).replace('\\n', '')
sec_part = str(row[7]).replace('\\n', '')
if first_part != 'nan':
f.write(first_part + '\n')
if sec_part != 'nan':
f.write(sec_part + '\n')
read_train_data('./challenging-america-word-gap-prediction/train/in.tsv')
!head -10 input_train.txt
from itertools import islice
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
def get_word_lines_from_file(file_name):
with open(file_name, 'r') as fh:
for line in fh:
yield get_words_from_line(line)
vocab_size = 30000
vocab = build_vocab_from_iterator(
get_word_lines_from_file('input_train.txt'),
max_tokens = vocab_size,
specials = ['<unk>'])
vocab['is']
print(vocab['is'])
from torch import nn
import torch
embed_size = 100
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size)
vocab.set_default_index(vocab['<unk>'])
!shuf < input_train.txt > input_train.shuf.txt
from torch.utils.data import IterableDataset
import itertools
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
train_dataset = Bigrams('input_train.shuf.txt', vocab_size)
from torch.utils.data import DataLoader
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=5000)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model1.bin')
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward(['he'])).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
list(zip(top_words, top_indices, top_probs))
import regex as re
def predict_word(word):
device = 'cuda'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load('model1.bin'))
model.eval()
ixs = torch.tensor(vocab.forward([word])).to(device)
out = model(ixs)
top = torch.topk(out[0], 8)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
to_return = ''
total = 1.0
for el in list(zip(top_words, top_indices, top_probs)):
pattern = re.compile("^([A-Za-z0-9])+$")
if re.match(pattern, el[0]):
if total - top_probs[0] >= 0:
to_return += f'{el[0]}:{top_probs[0]} '
total -= top_probs[0]
if total != 1.0:
to_return += f':{total}'
return to_return
!pip install nltk
from nltk.tokenize import RegexpTokenizer
from english_words import english_words_set
from nltk import trigrams
import os
import kenlm
from math import log10
tokenizer = RegexpTokenizer(r"\w+")
import csv
class WordGapPrediction:
def __init__(self):
self.tokenizer = RegexpTokenizer(r"\w+")
self.model = None
self.vocab = set()
self.alpha = 0.6
def read_train_data(self, file):
data = pd.read_csv(file, sep="\t", error_bad_lines=False, index_col=0, header=None)
with open('input_train.txt', 'w') as f:
for index, row in data[:500000].iterrows():
first_part = str(row[6])
sec_part = str(row[7])
if first_part != 'nan':
f.write(first_part + '\n')
if sec_part != 'nan':
f.write(sec_part + '\n')
os.system('sh ./kenlm.sh')
self.model = kenlm.Model("model.binary")
def generate_outputs(self, input_file, output_file):
data = pd.read_csv(input_file, sep='\t', error_bad_lines=False, index_col=0, header=None, quoting=csv.QUOTE_NONE)
with open(output_file, 'w') as f:
for index, row in data.iterrows():
first_context = row[6]
sec_context = row[7]
first_context_tokens = self.tokenizer.tokenize(first_context)
sec_context_tokens = self.tokenizer.tokenize(sec_context)
if len(first_context_tokens) + len(sec_context_tokens) < 4:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
prediction = word_gap_prediction.predict_probs(first_context_tokens[-1], sec_context_tokens[0])
f.write(prediction + '\n')
def predict_probs(self, word1, word2):
predictions = []
for word in english_words_set:
sentence = word1 + ' ' + word + ' ' + word2
text_score = self.model.score(sentence, bos=False, eos=False)
if len(predictions) < 12:
predictions.append((word, text_score))
def generate_outputs(input_file, output_file):
data = pd.read_csv(input_file, sep='\t', error_bad_lines=False, index_col=0, header=None, quoting=csv.QUOTE_NONE)
with open(output_file, 'w') as f:
for index, row in data.iterrows():
first_context = row[6]
sec_context = row[7]
first_context_tokens = tokenizer.tokenize(first_context)
sec_context_tokens = tokenizer.tokenize(sec_context)
if len(first_context_tokens) + len(sec_context_tokens) < 4:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
worst_score = None
for score in predictions:
if not worst_score:
worst_score = score
else:
if worst_score[1] > score[1]:
worst_score = score
if worst_score[1] < text_score:
predictions.remove(worst_score)
predictions.append((word, text_score))
probs = sorted(predictions, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
prediction = predict_word(first_context_tokens[-1])
if not prediction:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
f.write(prediction + '\n')
word_gap_prediction = WordGapPrediction()
word_gap_prediction.read_train_data('./train/in.tsv')
word_gap_prediction.generate_outputs('dev-0/in.tsv', 'dev-0/out.tsv')
word_gap_prediction.generate_outputs('test-A/in.tsv', 'test-A/out.tsv')
generate_outputs('./challenging-america-word-gap-prediction/dev-0/in.tsv', './challenging-america-word-gap-prediction/dev-0/out.tsv')
generate_outputs('./challenging-america-word-gap-prediction/test-A/in.tsv', './challenging-america-word-gap-prediction/test-A/out.tsv')
!wget https://gonito.net/get/bin/geval
!chmod u+x geval
!./geval -t ./challenging-america-word-gap-prediction/dev-0/ --metric PerplexityHashed

File diff suppressed because it is too large Load Diff