Kenlm model

This commit is contained in:
Wojciech Jarmosz 2022-04-23 23:26:04 +02:00
parent dc61acc340
commit a0c4ca1217
4 changed files with 17983 additions and 17972 deletions

File diff suppressed because it is too large Load Diff

5
kenlm.sh Executable file
View File

@ -0,0 +1,5 @@
#!/bin/bash
KENLM_BUILD_PATH='/home/zary/Desktop/kenlm/build'
$KENLM_BUILD_PATH/bin/lmplz -o 3 < input_train.txt > model.arpa
$KENLM_BUILD_PATH/bin/build_binary model.arpa model.binary

84
run.py
View File

@ -1,68 +1,74 @@
import pandas as pd import pandas as pd
import csv import csv
from collections import Counter, defaultdict
from nltk.tokenize import RegexpTokenizer from nltk.tokenize import RegexpTokenizer
from english_words import english_words_set
from nltk import trigrams from nltk import trigrams
import os
import kenlm
from math import log10
class WordGapPrediction: class WordGapPrediction:
def __init__(self): def __init__(self):
self.tokenizer = RegexpTokenizer(r"\w+") self.tokenizer = RegexpTokenizer(r"\w+")
self.model = defaultdict(lambda: defaultdict(lambda: 0)) self.model = None
self.vocab = set() self.vocab = set()
self.alpha = 0.001 self.alpha = 0.6
def read_train_data(self, file): def read_train_data(self, file):
data = pd.read_csv(file, sep="\t", error_bad_lines=False, index_col=0, header=None) data = pd.read_csv(file, sep="\t", error_bad_lines=False, index_col=0, header=None)
for index, row in data[:100000].iterrows(): with open('input_train.txt', 'w') as f:
text = str(row[6]) + ' ' + str(row[7]) for index, row in data[:500000].iterrows():
tokens = self.tokenizer.tokenize(text) first_part = str(row[6])
for w1, w2, w3 in trigrams(tokens, pad_right=True, pad_left=True): sec_part = str(row[7])
if w1 and w2 and w3: if first_part != 'nan':
self.model[(w2, w3)][w1] += 1 f.write(first_part + '\n')
self.model[(w1, w2)][w3] += 1 if sec_part != 'nan':
self.vocab.add(w1) f.write(sec_part + '\n')
self.vocab.add(w2) os.system('sh ./kenlm.sh')
self.vocab.add(w3) self.model = kenlm.Model("model.binary")
for word_pair in self.model:
num_n_grams = float(sum(self.model[word_pair].values()))
for word in self.model[word_pair]:
self.model[word_pair][word] = (self.model[word_pair][word] + self.alpha) / (num_n_grams + self.alpha*len(self.vocab))
def generate_outputs(self, input_file, output_file): def generate_outputs(self, input_file, output_file):
data = pd.read_csv(input_file, sep='\t', error_bad_lines=False, index_col=0, header=None, quoting=csv.QUOTE_NONE) data = pd.read_csv(input_file, sep='\t', error_bad_lines=False, index_col=0, header=None, quoting=csv.QUOTE_NONE)
with open(output_file, 'w') as f: with open(output_file, 'w') as f:
for index, row in data.iterrows(): for index, row in data.iterrows():
text = str(row[7]) first_context = row[6]
tokens = self.tokenizer.tokenize(text) sec_context = row[7]
if len(tokens) < 4: first_context_tokens = self.tokenizer.tokenize(first_context)
sec_context_tokens = self.tokenizer.tokenize(sec_context)
if len(first_context_tokens) + len(sec_context_tokens) < 4:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1' prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else: else:
prediction = word_gap_prediction.predict_probs(tokens[0], tokens[1]) prediction = word_gap_prediction.predict_probs(first_context_tokens[-1], sec_context_tokens[0])
f.write(prediction + '\n') f.write(prediction + '\n')
def predict_probs(self, word1, word2): def predict_probs(self, word1, word2):
predictions = dict(self.model[word1, word2])
most_common = dict(Counter(predictions).most_common(6))
total_prob = 0.0 predictions = []
str_prediction = '' for word in english_words_set:
sentence = word1 + ' ' + word + ' ' + word2
text_score = self.model.score(sentence, bos=False, eos=False)
for word, prob in most_common.items(): if len(predictions) < 12:
total_prob += prob predictions.append((word, text_score))
str_prediction += f'{word}:{prob} ' else:
worst_score = None
if total_prob == 0.0: for score in predictions:
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1' if not worst_score:
worst_score = score
if 1 - total_prob >= 0.01: else:
str_prediction += f":{1-total_prob}" if worst_score[1] > score[1]:
else: worst_score = score
str_prediction += f":0.01" if worst_score[1] < text_score:
predictions.remove(worst_score)
return str_prediction predictions.append((word, text_score))
probs = sorted(predictions, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
word_gap_prediction = WordGapPrediction() word_gap_prediction = WordGapPrediction()
word_gap_prediction.read_train_data('./train/in.tsv') word_gap_prediction.read_train_data('./train/in.tsv')

File diff suppressed because it is too large Load Diff