import pandas as pd import csv from collections import Counter, defaultdict from nltk.tokenize import RegexpTokenizer from nltk import trigrams class WordGapPrediction: def __init__(self): self.tokenizer = RegexpTokenizer(r"\w+") self.model = defaultdict(lambda: defaultdict(lambda: 0)) self.vocab = set() self.alpha = 0.001 def read_train_data(self, file): data = pd.read_csv(file, sep="\t", error_bad_lines=False, index_col=0, header=None) for index, row in data[:100000].iterrows(): text = str(row[6]) + ' ' + str(row[7]) tokens = self.tokenizer.tokenize(text) for w1, w2, w3 in trigrams(tokens, pad_right=True, pad_left=True): if w1 and w2 and w3: self.model[(w2, w3)][w1] += 1 self.model[(w1, w2)][w3] += 1 self.vocab.add(w1) self.vocab.add(w2) self.vocab.add(w3) for word_pair in self.model: num_n_grams = float(sum(self.model[word_pair].values())) for word in self.model[word_pair]: self.model[word_pair][word] = (self.model[word_pair][word] + self.alpha) / (num_n_grams + self.alpha*len(self.vocab)) def generate_outputs(self, input_file, output_file): data = pd.read_csv(input_file, sep='\t', error_bad_lines=False, index_col=0, header=None, quoting=csv.QUOTE_NONE) with open(output_file, 'w') as f: for index, row in data.iterrows(): text = str(row[7]) tokens = self.tokenizer.tokenize(text) if len(tokens) < 4: prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1' else: prediction = word_gap_prediction.predict_probs(tokens[0], tokens[1]) f.write(prediction + '\n') def predict_probs(self, word1, word2): predictions = dict(self.model[word1, word2]) most_common = dict(Counter(predictions).most_common(6)) total_prob = 0.0 str_prediction = '' for word, prob in most_common.items(): total_prob += prob str_prediction += f'{word}:{prob} ' if total_prob == 0.0: return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1' if 1 - total_prob >= 0.01: str_prediction += f":{1-total_prob}" else: str_prediction += f":0.01" return str_prediction word_gap_prediction = WordGapPrediction() word_gap_prediction.read_train_data('./train/in.tsv') word_gap_prediction.generate_outputs('dev-0/in.tsv', 'dev-0/out.tsv') word_gap_prediction.generate_outputs('test-A/in.tsv', 'test-A/out.tsv')