ium_434704/linear_regression.py

51 lines
1.5 KiB
Python
Raw Normal View History

import pandas as pd
import numpy as np
import tensorflow as tf
import os.path
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
pd.set_option("display.max_columns", None)
# Wczytanie danych
2021-05-14 01:22:28 +02:00
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train")
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test")
# Stworzenie modelu
columns_to_use = ['Year', 'Runtime', 'Netflix']
train_X = tf.convert_to_tensor(train_data[columns_to_use])
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
test_X = tf.convert_to_tensor(test_data[columns_to_use])
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
normalizer = preprocessing.Normalization(input_shape=[3,])
normalizer.adapt(train_X)
2021-04-25 22:19:56 +02:00
if os.path.isdir('linear_regression'):
model = keras.models.load_model('linear_regression')
else:
model = keras.Sequential([
keras.Input(shape=(len(columns_to_use),)),
normalizer,
layers.Dense(30, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(25, activation='relu'),
layers.Dense(1)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001))
model.fit(train_X, train_Y, verbose=0, epochs=100)
model.save('linear_regression')
# Predykcja na danych testowych
results = model.predict(test_X)
# Zapis danych do pliku
2021-05-15 03:22:57 +02:00
with open("results_lab5.txt", 'w') as file:
for result in results:
file.writelines(str(result[0]) + "\n")