ium_434704/ml_model.py

55 lines
1.6 KiB
Python
Raw Normal View History

import pandas as pd
import numpy as np
import tensorflow as tf
import os.path
import mlflow
import sys
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
arguments = sys.argv[1:]
verbose = int(arguments[0])
epochs = int(arguments[1])
# Wczytanie danych
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train")
test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test")
# Stworzenie modelu
columns_to_use = ['Year', 'Runtime', 'Netflix']
train_X = tf.convert_to_tensor(train_data[columns_to_use])
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
test_X = tf.convert_to_tensor(test_data[columns_to_use])
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
normalizer = preprocessing.Normalization(input_shape=[3,])
normalizer.adapt(train_X)
model = keras.Sequential([
keras.Input(shape=(len(columns_to_use),)),
normalizer,
layers.Dense(30, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(25, activation='relu'),
layers.Dense(1)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001),
metrics=[tf.keras.metrics.RootMeanSquaredError()])
model.fit(train_X, train_Y, verbose=verbose, epochs=epochs)
signature = mlflow.models.signature.infer_signature(train_X.numpy(), model.predict(train_X.numpy()))
input_data = test_X
with mlflow.start_run():
mlflow.keras.save_model(model, "movies_on_streaming_platforms_model", input_example=input_data.numpy(), signature=signature)