29 lines
832 B
Python
29 lines
832 B
Python
|
import sys
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
import os.path
|
||
|
|
||
|
from tensorflow import keras
|
||
|
from tensorflow.keras import layers
|
||
|
from tensorflow.keras.layers.experimental import preprocessing
|
||
|
|
||
|
# Wczytanie danych
|
||
|
test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test")
|
||
|
|
||
|
columns_to_use = ['Year', 'Runtime', 'Netflix']
|
||
|
test_X = tf.convert_to_tensor(test_data[columns_to_use])
|
||
|
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
|
||
|
|
||
|
model = tf.keras.models.load_model('linear_regression.h5')
|
||
|
|
||
|
scores = model.evaluate(x=test_X,
|
||
|
y=test_Y)
|
||
|
|
||
|
with open('single_metrics.txt', 'w') as file:
|
||
|
for idx, score in enumerate(scores):
|
||
|
if idx == 0:
|
||
|
file.write("Recall: " + str(score) + "\n")
|
||
|
if idx == 1:
|
||
|
file.write("RMSE: " + str(score) + "\n")
|