LAB 6 - 1, Add pipeline for training

This commit is contained in:
Wojciech Jarmosz 2021-05-13 22:20:25 +02:00
parent e89cd155ae
commit 0fce6cd355
2 changed files with 72 additions and 0 deletions

29
Jenkinsfile_train Normal file
View File

@ -0,0 +1,29 @@
pipeline {
agent {
docker { image 'jarmosz/ium:1.1' }
}
parameters {
string(name: 'optioms', description: 'Trainig script options')
buildSelector(defaultSelector: lastSuccessful(), description: 'Use latest build', name: 'BUILD_SELECTOR')
}
stages {
stage("Copy artifacts"){
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's434704-create-dataset', selector: buildParameter('BUILD_SELECTOR')
}
}
stage("Run training"){
sh "python3 training.py ${params.options}"
}
stage('Save trained model files') {
steps{
archiveArtifacts 'linear_regression/**'
}
}
}
post {
always {
mail body: ${currentBuild.currentResult}, subject: 's434704', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

43
training.py Normal file
View File

@ -0,0 +1,43 @@
import pandas as pd
import numpy as np
import tensorflow as tf
import os.path
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
pd.set_option("display.max_columns", None)
# Wczytanie danych
train_data = pd.read_csv("./train.csv")
test_data = pd.read_csv("./test.csv")
# Stworzenie modelu
columns_to_use = ['Year', 'Runtime', 'Netflix']
train_X = tf.convert_to_tensor(train_data[columns_to_use])
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
test_X = tf.convert_to_tensor(test_data[columns_to_use])
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
normalizer = preprocessing.Normalization(input_shape=[3,])
normalizer.adapt(train_X)
if os.path.isdir('linear_regression'):
model = keras.models.load_model('linear_regression')
else:
model = keras.Sequential([
keras.Input(shape=(len(columns_to_use),)),
normalizer,
layers.Dense(30, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(25, activation='relu'),
layers.Dense(1)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001))
model.fit(train_X, train_Y, verbose=0, epochs=100)
model.save('linear_regression')