Run training
This commit is contained in:
parent
999da6af32
commit
b73ac931cb
8
Jenkinsfile
vendored
8
Jenkinsfile
vendored
@ -10,11 +10,13 @@ stages {
|
||||
steps {
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${params.KAGGLE_KEY}", "CUTOFF=${params.CUTOFF}" ]) {
|
||||
// Skrypt z lab 5 - prosta sieć neuronowa
|
||||
sh 'python3 linear_regression.py'
|
||||
// Wygenerowanie podziału danych
|
||||
sh 'python3 script.py'
|
||||
// Uruchomienie skryptu
|
||||
sh "chmod 777 ./data_download.sh"
|
||||
sh "./data_download.sh"
|
||||
// Stare skrypty bashowe do podziału zbioru
|
||||
// sh "chmod 777 ./data_download.sh"
|
||||
// sh "./data_download.sh"
|
||||
// Zapisanie artefaktów
|
||||
archiveArtifacts "MoviesOnStreamingPlatforms_updated.dev"
|
||||
archiveArtifacts "MoviesOnStreamingPlatforms_updated.test"
|
||||
|
@ -34,7 +34,11 @@ test_ratio = 0.1
|
||||
|
||||
film_train, film_test = train_test_split(film_data, test_size=1 - train_ratio)
|
||||
|
||||
film_valid, film_test = train_test_split(film_test, test_size=test_ratio/(test_ratio + validation_ratio))
|
||||
film_valid, film_test = train_test_split(film_test, test_size=test_ratio/(test_ratio + validation_ratio))
|
||||
|
||||
pd.to_csv(film_train, 'MoviesOnStreamingPlatforms_updated.train')
|
||||
pd.to_csv(film_test, 'MoviesOnStreamingPlatforms_updated.test')
|
||||
pd.to_csv(film_valid, 'MoviesOnStreamingPlatforms_updated.valid')
|
||||
|
||||
# Statystki głównego zbioru i podzbiorów
|
||||
for i, data_set in enumerate([film_data, film_train, film_valid, film_test]):
|
||||
|
@ -9,17 +9,13 @@ from tensorflow.keras.layers.experimental import preprocessing
|
||||
|
||||
pd.set_option("display.max_columns", None)
|
||||
|
||||
cols = ['0','ID','Title','Year','Age','IMDb','Rotten Tomatoes','Netflix','Hulu','Prime Video','Disney+','Type','Directors','Genres','Country','Language','Runtime']
|
||||
|
||||
# Wczytanie danych
|
||||
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train", header=None, usecols=cols)
|
||||
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train")
|
||||
|
||||
# Stworzenie modelu
|
||||
columns_to_use = ['Year', 'Runtime', 'Netflix']
|
||||
train_X = tf.convert_to_tensor(train_data[columns_to_use])
|
||||
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
|
||||
test_X = tf.convert_to_tensor(test_data[columns_to_use])
|
||||
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
|
||||
|
||||
normalizer = preprocessing.Normalization(input_shape=[3,])
|
||||
normalizer.adapt(train_X)
|
||||
|
Loading…
Reference in New Issue
Block a user