import pandas as pd import numpy as np import tensorflow as tf import os.path from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing pd.set_option("display.max_columns", None) # Wczytanie danych train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train") test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test") # Stworzenie modelu columns_to_use = ['Year', 'Runtime', 'Netflix'] train_X = tf.convert_to_tensor(train_data[columns_to_use]) train_Y = tf.convert_to_tensor(train_data[["IMDb"]]) test_X = tf.convert_to_tensor(test_data[columns_to_use]) test_Y = tf.convert_to_tensor(test_data[["IMDb"]]) normalizer = preprocessing.Normalization(input_shape=[3,]) normalizer.adapt(train_X) model = keras.Sequential([ keras.Input(shape=(len(columns_to_use),)), normalizer, layers.Dense(30, activation='relu'), layers.Dense(10, activation='relu'), layers.Dense(25, activation='relu'), layers.Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam(0.001)) model.fit(train_X, train_Y, verbose=0, epochs=100) # Predykcja na danych testowych results = model.predict(test_X) # Zapis danych do pliku with open("results_lab5.txt", 'w') as file: for result in results: file.writelines(str(result[0]) + "\n")