import json import mlflow from mlflow.tracking import MlflowClient import mlflow.pyfunc import torch import numpy as np import pandas as pd import sys arguments = sys.argv[1:] mlflow.set_tracking_uri("http://172.17.0.1:5000") client = MlflowClient() model_version = 1 model_name = "s426206" input = str(arguments[0]) experiment = client.get_latest_versions(model_name, stages=None) print(experiment) with open(f'{experiment[0].source}/{input}', 'r') as file: json_data = json.load(file) print(model(torch.tensor(np.array(json_data['inputs'])).float()))