import pandas as pd import numpy as np import tensorflow as tf import os.path from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing pd.set_option("display.max_columns", None) cols = ['0','ID','Title','Year','Age','IMDb','Rotten Tomatoes','Netflix','Hulu','Prime Video','Disney+','Type','Directors','Genres','Country','Language','Runtime'] # Wczytanie danych train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train", header=None, usecols=cols) # Stworzenie modelu columns_to_use = ['Year', 'Runtime', 'Netflix'] train_X = tf.convert_to_tensor(train_data[columns_to_use]) train_Y = tf.convert_to_tensor(train_data[["IMDb"]]) test_X = tf.convert_to_tensor(test_data[columns_to_use]) test_Y = tf.convert_to_tensor(test_data[["IMDb"]]) normalizer = preprocessing.Normalization(input_shape=[3,]) normalizer.adapt(train_X) if os.path.isdir('linear_regression'): model = keras.models.load_model('linear_regression') else: model = keras.Sequential([ keras.Input(shape=(len(columns_to_use),)), normalizer, layers.Dense(30, activation='relu'), layers.Dense(10, activation='relu'), layers.Dense(25, activation='relu'), layers.Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam(0.001)) model.fit(train_X, train_Y, verbose=0, epochs=100) model.save('linear_regression')