import sys import pandas as pd import numpy as np import tensorflow as tf import os.path from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing # Wczytanie danych test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test") columns_to_use = ['Year', 'Runtime', 'Netflix'] test_X = tf.convert_to_tensor(test_data[columns_to_use]) test_Y = tf.convert_to_tensor(test_data[["IMDb"]]) model = tf.keras.models.load_model('linear_regression.h5') scores = model.evaluate(x=test_X, y=test_Y) with open('single_metrics.txt', 'w') as file: for idx, score in enumerate(scores): if idx == 0: file.write("Recall: " + str(score) + "\n") if idx == 1: file.write("RMSE: " + str(score) + "\n")