ium_434704/training.py
Wojciech Jarmosz 9aa2b7d4ad
Some checks failed
s434704-training/pipeline/head There was a failure building this commit
Fixes for lab5, lab6
2021-05-15 03:50:19 +02:00

45 lines
1.2 KiB
Python

import sys
import pandas as pd
import numpy as np
import tensorflow as tf
import os.path
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
arguments = sys.argv[1:]
verbose = arguments[0]
epochs = arguments[1]
pd.set_option("display.max_columns", None)
# Wczytanie danych
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train")
# Stworzenie modelu
columns_to_use = ['Year', 'Runtime', 'Netflix']
train_X = tf.convert_to_tensor(train_data[columns_to_use])
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
normalizer = preprocessing.Normalization(input_shape=[3,])
normalizer.adapt(train_X)
model = keras.Sequential([
keras.Input(shape=(len(columns_to_use),)),
normalizer,
layers.Dense(30, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(25, activation='relu'),
layers.Dense(1)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001),
metrics=[tf.keras.metrics.RootMeanSquaredError()])
model.fit(train_X, train_Y, verbose=verbose, epochs=epochs)
model.save('linear_regression.h5')