79 lines
2.2 KiB
Python
79 lines
2.2 KiB
Python
import sys
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import os.path
|
|
|
|
from sacred import Experiment
|
|
from sacred.observers import FileStorageObserver, MongoObserver
|
|
|
|
from tensorflow import keras
|
|
from tensorflow.keras import layers
|
|
from tensorflow.keras.layers.experimental import preprocessing
|
|
|
|
exp = Experiment("s434704", interactive=False, save_git_info=False)
|
|
exp.observers.append(FileStorageObserver("sacred_file"))
|
|
exp.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name="sacred"))
|
|
|
|
@exp.config
|
|
def my_config():
|
|
verbose = 0
|
|
epochs = 100
|
|
|
|
@exp.capture
|
|
def training(verbose, epochs, _log, _run):
|
|
|
|
pd.set_option("display.max_columns", None)
|
|
|
|
# Wczytanie danych
|
|
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train")
|
|
|
|
# Stworzenie modelu
|
|
columns_to_use = ['Year', 'Runtime', 'Netflix']
|
|
train_X = tf.convert_to_tensor(train_data[columns_to_use])
|
|
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
|
|
|
|
normalizer = preprocessing.Normalization(input_shape=[3,])
|
|
normalizer.adapt(train_X)
|
|
|
|
model = keras.Sequential([
|
|
keras.Input(shape=(len(columns_to_use),)),
|
|
normalizer,
|
|
layers.Dense(30, activation='relu'),
|
|
layers.Dense(10, activation='relu'),
|
|
layers.Dense(25, activation='relu'),
|
|
layers.Dense(1)
|
|
])
|
|
|
|
model.compile(loss='mean_absolute_error',
|
|
optimizer=tf.keras.optimizers.Adam(0.001),
|
|
metrics=[tf.keras.metrics.RootMeanSquaredError()])
|
|
|
|
params = f"Verbose: {verbose}, Epochs: {epochs}"
|
|
_log.info(params)
|
|
|
|
model.fit(train_X, train_Y, verbose=verbose, epochs=epochs)
|
|
|
|
model.save('linear_regression.h5')
|
|
|
|
# Evaluation
|
|
|
|
test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test")
|
|
|
|
columns_to_use = ['Year', 'Runtime', 'Netflix']
|
|
test_X = tf.convert_to_tensor(test_data[columns_to_use])
|
|
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
|
|
|
|
scores = model.evaluate(x=test_X,
|
|
y=test_Y)
|
|
|
|
_run.log_scalar("training.RMSE", scores[1])
|
|
|
|
@exp.automain
|
|
def run(verbose, epochs):
|
|
training()
|
|
|
|
runner = exp.run()
|
|
exp.add_source_file("./training.py")
|
|
exp.add_artifact("linear_regression.h5") |