change script for fine-tuning alpha
This commit is contained in:
parent
1b0c901e32
commit
ca339fcfcc
18
run.py
18
run.py
@ -1,5 +1,6 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import csv
|
import csv
|
||||||
|
import sys
|
||||||
import regex as re
|
import regex as re
|
||||||
from collections import Counter, defaultdict
|
from collections import Counter, defaultdict
|
||||||
from nltk import trigrams, word_tokenize
|
from nltk import trigrams, word_tokenize
|
||||||
@ -17,7 +18,7 @@ class Model():
|
|||||||
self.vocab = set()
|
self.vocab = set()
|
||||||
|
|
||||||
def train(self, data):
|
def train(self, data):
|
||||||
for _, row in data.iterrows():
|
for index, row in data.iterrows():
|
||||||
text = clean_text(str(row['text']))
|
text = clean_text(str(row['text']))
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||||
@ -26,6 +27,9 @@ class Model():
|
|||||||
self.vocab.add(w2)
|
self.vocab.add(w2)
|
||||||
self.vocab.add(w3)
|
self.vocab.add(w3)
|
||||||
self.probs[(w1, w3)][w2] += 1
|
self.probs[(w1, w3)][w2] += 1
|
||||||
|
# limit number of data rows used for training
|
||||||
|
if index > 10000:
|
||||||
|
break
|
||||||
|
|
||||||
for w1_w3 in self.probs:
|
for w1_w3 in self.probs:
|
||||||
total_count = float(sum(self.probs[w1_w3].values()))
|
total_count = float(sum(self.probs[w1_w3].values()))
|
||||||
@ -46,15 +50,19 @@ class Model():
|
|||||||
str_prediction += f'{word}:{prob} '
|
str_prediction += f'{word}:{prob} '
|
||||||
|
|
||||||
remaining_prob = 1 - total_prob
|
remaining_prob = 1 - total_prob
|
||||||
|
|
||||||
if remaining_prob == 0:
|
|
||||||
remaining_prob = 0.01
|
|
||||||
|
|
||||||
str_prediction += f':{remaining_prob}'
|
str_prediction += f':{remaining_prob}'
|
||||||
|
|
||||||
return str_prediction
|
return str_prediction
|
||||||
|
|
||||||
|
|
||||||
|
# check arguments
|
||||||
|
if len(sys.argv) != 2:
|
||||||
|
print('Wrong number of arguments. Expected 1 - alpha smoothing parameter.')
|
||||||
|
quit()
|
||||||
|
else:
|
||||||
|
alpha = sys.argv[1]
|
||||||
|
|
||||||
# load training data
|
# load training data
|
||||||
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
@ -66,7 +74,7 @@ train_data['text'] = train_data[6] + train_data[0] + train_data[7]
|
|||||||
train_data = train_data[['text']]
|
train_data = train_data[['text']]
|
||||||
|
|
||||||
# init model with given aplha
|
# init model with given aplha
|
||||||
model = Model(0.01)
|
model = Model(alpha)
|
||||||
|
|
||||||
# train model probs
|
# train model probs
|
||||||
model.train(train_data)
|
model.train(train_data)
|
||||||
|
Loading…
Reference in New Issue
Block a user