change script for fine-tuning alpha

This commit is contained in:
Łukasz Jędyk 2022-04-09 14:54:19 +02:00
parent 1b0c901e32
commit ca339fcfcc

18
run.py
View File

@ -1,5 +1,6 @@
import pandas as pd
import csv
import sys
import regex as re
from collections import Counter, defaultdict
from nltk import trigrams, word_tokenize
@ -17,7 +18,7 @@ class Model():
self.vocab = set()
def train(self, data):
for _, row in data.iterrows():
for index, row in data.iterrows():
text = clean_text(str(row['text']))
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
@ -26,6 +27,9 @@ class Model():
self.vocab.add(w2)
self.vocab.add(w3)
self.probs[(w1, w3)][w2] += 1
# limit number of data rows used for training
if index > 10000:
break
for w1_w3 in self.probs:
total_count = float(sum(self.probs[w1_w3].values()))
@ -47,14 +51,18 @@ class Model():
remaining_prob = 1 - total_prob
if remaining_prob == 0:
remaining_prob = 0.01
str_prediction += f':{remaining_prob}'
return str_prediction
# check arguments
if len(sys.argv) != 2:
print('Wrong number of arguments. Expected 1 - alpha smoothing parameter.')
quit()
else:
alpha = sys.argv[1]
# load training data
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
@ -66,7 +74,7 @@ train_data['text'] = train_data[6] + train_data[0] + train_data[7]
train_data = train_data[['text']]
# init model with given aplha
model = Model(0.01)
model = Model(alpha)
# train model probs
model.train(train_data)